
RobotPy WPILib Documentation
Release master

RobotPy development team

Mar 25, 2017

Robot Programming

1 WPILib API 3
1.1 wpilib Package . 3
1.2 wpilib.buttons Package . 106
1.3 wpilib.command Package . 108
1.4 wpilib.interfaces Package . 121

2 Indices and tables 129

Python Module Index 131

i

ii

RobotPy WPILib Documentation, Release master

RobotPy WPILib is the source code for a 100% python implementation of WPILib, the library used to interface with
hardware for the FIRST Robotics Competition. Teams can use this library to write their robot code in Python, a
powerful dynamic programming language.

Note: RobotPy is a community project and is not officially supported by FIRST. Please see the FAQ for more
information.

Robot Programming 1

http://robotpy.github.io/faq/

RobotPy WPILib Documentation, Release master

2 Robot Programming

CHAPTER 1

WPILib API

The WPI Robotics library (WPILib) is a set of classes that interfaces to the hardware in the FRC control system and
your robot. There are classes to handle sensors, motors, the driver station, and a number of other utility functions like
timing and field management. The library is designed to:

• Deal with all the low level interfacing to these components so you can concentrate on solving this year’s “robot
problem”. This is a philosophical decision to let you focus on the higher-level design of your robot rather than
deal with the details of the processor and the operating system.

• Understand everything at all levels by making the full source code of the library available. You can study (and
modify) the algorithms used by the gyro class for oversampling and integration of the input signal or just ask
the class for the current robot heading. You can work at any level.

wpilib Package

This is the core of WPILib.

wpilib.ADXL345_I2C(port, range) ADXL345 accelerometer device via i2c
wpilib.ADXL345_SPI(port, range) ADXL345 accelerometer device via spi
wpilib.ADXL362(range[, port]) ADXL362 SPI Accelerometer.
wpilib.ADXRS450_Gyro([port]) Use a rate gyro to return the robots heading relative to a

starting position.
wpilib.AnalogAccelerometer(channel) Analog Accelerometer
wpilib.AnalogGyro(channel[, ...]) Interface to a gyro device via an AnalogInput
wpilib.AnalogInput(channel) Analog input
wpilib.AnalogOutput(channel) Analog output
wpilib.AnalogPotentiometer(channel) Reads a potentiometer via an AnalogInput
wpilib.AnalogTrigger(channel) Converts an analog signal into a digital signal
wpilib.AnalogTriggerOutput(...) Represents a specific output from an AnalogTrigger
wpilib.BuiltInAccelerometer([range]) Built-in accelerometer device

Continued on next page

3

RobotPy WPILib Documentation, Release master

Table 1.1 – continued from previous page
wpilib.CameraServer Provides a way to launch an out of process cscore-based

camera service instance, for streaming or for image pro-
cessing.

wpilib.CANJaguar(*args, **kwargs)
wpilib.CANTalon(*args, **kwargs)
wpilib.Compressor([module]) Class for operating a compressor connected to a PCM

(Pneumatic Control Module).
wpilib.ControllerPower Provides access to power levels on the roboRIO
wpilib.Counter(*args, **kwargs) Counts the number of ticks on a DigitalInput channel.
wpilib.DigitalGlitchFilter() Class to enable glitch filtering on a set of digital inputs.
wpilib.DigitalInput(channel) Reads a digital input.
wpilib.DigitalOutput(channel) Writes to a digital output
wpilib.DigitalSource(channel, ...) DigitalSource Interface.
wpilib.DoubleSolenoid(*args, ...) Controls 2 channels of high voltage Digital Output on the

PCM.
wpilib.DriverStation() Provide access to the network communication data to /

from the Driver Station.
wpilib.Encoder(*args, **kwargs) Class to read quadrature encoders.
wpilib.Filter(source) Superclass for filters
wpilib.GearTooth(channel[, ...]) Interface to the gear tooth sensor supplied by FIRST
wpilib.GyroBase() GyroBase is the common base class for Gyro implementa-

tions such as AnalogGyro.
wpilib.I2C(port, deviceAddress[, simPort]) I2C bus interface class.
wpilib.interfaces.GamepadBase(port) GamepadBase Interface.
wpilib.interfaces.GenericHID(port) GenericHID Interface.
wpilib.InterruptableSensorBase() Base for sensors to be used with interrupts
wpilib.IterativeRobot() IterativeRobot implements a specific type of Robot Pro-

gram framework, extending the RobotBase class.
wpilib.Jaguar(channel) Texas Instruments / Vex Robotics Jaguar Speed Controller

as a PWM device.
wpilib.Joystick(port[, ...]) Handle input from standard Joysticks connected to the

Driver Station.
wpilib.LinearDigitalFilter(...) This class implements a linear, digital filter.
wpilib.LiveWindow The public interface for putting sensors and actuators on

the LiveWindow.
wpilib.LiveWindowSendable A special type of object that can be displayed on the live

window.
wpilib.MotorSafety() Provides mechanisms to safely shutdown motors if they

aren’t updated often enough.
wpilib.PIDController(*args, ...) Can be used to control devices via a PID Control Loop.
wpilib.PowerDistributionPanel([...]) Use to obtain voltage, current, temperature, power, and en-

ergy from the
wpilib.Preferences() Provides a relatively simple way to save important values to

the roboRIO to access the next time the roboRIO is booted.
wpilib.PWM (channel) Raw interface to PWM generation in the FPGA.
wpilib.PWMSpeedController(channel) Common base class for all PWM Speed Controllers.
wpilib.Relay(channel[, direction]) Controls VEX Robotics Spike style relay outputs.
wpilib.Resource(size) Tracks resources in the program.
wpilib.RobotBase() Implement a Robot Program framework.

Continued on next page

4 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Table 1.1 – continued from previous page
wpilib.RobotDrive(*args, **kwargs) Operations on a robot drivetrain based on a definition of the

motor configuration.
wpilib.RobotState Provides an interface to determine the current operating

state of the robot code.
wpilib.SafePWM (channel) A raw PWM interface that implements the MotorSafety

interface
wpilib.SampleRobot() A simple robot base class that knows the standard FRC

competition states (disabled, autonomous, or operator con-
trolled).

wpilib.SD540(channel) Mindsensors SD540 Speed Controller
wpilib.Sendable The base interface for objects that can be sent over the net-

work
wpilib.SendableChooser() A useful tool for presenting a selection of options to be

displayed on
wpilib.SensorBase Base class for all sensors
wpilib.Servo(channel) Standard hobby style servo
wpilib.SmartDashboard The bridge between robot programs and the SmartDash-

board on the laptop
wpilib.Solenoid(*args, **kwargs) Solenoid class for running high voltage Digital Output.
wpilib.SolenoidBase(moduleNumber) SolenoidBase class is the common base class for the

Solenoid and DoubleSolenoid classes.
wpilib.Spark(channel) REV Robotics SPARK Speed Controller
wpilib.SPI(port[, simPort]) Represents a SPI bus port
wpilib.Talon(channel) Cross the Road Electronics (CTRE) Talon and Talon SR

Speed Controller via PWM
wpilib.TalonSRX(channel) Cross the Road Electronics (CTRE) Talon SRX Speed

Controller via PWM
wpilib.Timer() Provides time-related functionality for the robot
wpilib.Ultrasonic(pingChannel, ...) Ultrasonic rangefinder control
wpilib.Utility Contains global utility functions
wpilib.Victor(channel) VEX Robotics Victor 888 Speed Controller via PWM
wpilib.VictorSP(channel) VEX Robotics Victor SP Speed Controller via PWM
wpilib.XboxController(port) Handle input from Xbox 360 or Xbox One controllers con-

nected to the Driver Station.

ADXL345_I2C

class wpilib.ADXL345_I2C(port, range, address=None)
Bases: wpilib.SensorBase

ADXL345 accelerometer device via i2c

Constructor.

Parameters

• port (I2C.Port) – The I2C port the accelerometer is attached to.

• range (ADXL345_I2C.Range) – The range (+ or -) that the accelerometer will measure.

• address – the I2C address of the accelerometer (0x1D or 0x53)

class Axes
Bases: object

1.1. wpilib Package 5

RobotPy WPILib Documentation, Release master

kX = 0

kY = 2

kZ = 4

class ADXL345_I2C.Range
Bases: object

k16G = 3

k2G = 0

k4G = 1

k8G = 2

ADXL345_I2C.free()

ADXL345_I2C.getAcceleration(axis)
Get the acceleration of one axis in Gs.

Parameters axis – The axis to read from.

Returns An object containing the acceleration measured on each axis of the ADXL345 in Gs.

ADXL345_I2C.getAccelerations()
Get the acceleration of all axes in Gs.

Returns X,Y,Z tuple of acceleration measured on all axes of the ADXL345 in Gs.

ADXL345_I2C.getX()
Get the x axis acceleration

Returns The acceleration along the x axis in g-forces

ADXL345_I2C.getY()
Get the y axis acceleration

Returns The acceleration along the y axis in g-forces

ADXL345_I2C.getZ()
Get the z axis acceleration

Returns The acceleration along the z axis in g-forces

ADXL345_I2C.kAddress = 29

ADXL345_I2C.kDataFormatRegister = 49

ADXL345_I2C.kDataFormat_FullRes = 8

ADXL345_I2C.kDataFormat_IntInvert = 32

ADXL345_I2C.kDataFormat_Justify = 4

ADXL345_I2C.kDataFormat_SPI = 64

ADXL345_I2C.kDataFormat_SelfTest = 128

ADXL345_I2C.kDataRegister = 50

ADXL345_I2C.kGsPerLSB = 0.00390625

ADXL345_I2C.kPowerCtlRegister = 45

ADXL345_I2C.kPowerCtl_AutoSleep = 16

ADXL345_I2C.kPowerCtl_Link = 32

6 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

ADXL345_I2C.kPowerCtl_Measure = 8

ADXL345_I2C.kPowerCtl_Sleep = 4

ADXL345_I2C.setRange(range)
Set the measuring range of the accelerometer.

Parameters range (ADXL345_I2C.Range) – The maximum acceleration, positive or nega-
tive, that the accelerometer will measure.

ADXL345_SPI

class wpilib.ADXL345_SPI(port, range)
Bases: wpilib.SensorBase

ADXL345 accelerometer device via spi

Constructor. Use this when the device is the first/only device on the bus

Parameters

• port (SPI.Port) – The SPI port that the accelerometer is connected to

• range (ADXL345_SPI.Range) – The range (+ or -) that the accelerometer will measure.

class Axes
Bases: object

kX = 0

kY = 2

kZ = 4

class ADXL345_SPI.Range
Bases: object

k16G = 3

k2G = 0

k4G = 1

k8G = 2

ADXL345_SPI.free()

ADXL345_SPI.getAcceleration(axis)
Get the acceleration of one axis in Gs.

Parameters axis – The axis to read from.

Returns An object containing the acceleration measured on each axis of the ADXL345 in Gs.

ADXL345_SPI.getAccelerations()
Get the acceleration of all axes in Gs.

Returns X,Y,Z tuple of acceleration measured on all axes of the ADXL345 in Gs.

ADXL345_SPI.getX()
Get the x axis acceleration

Returns The acceleration along the x axis in g-forces

ADXL345_SPI.getY()
Get the y axis acceleration

1.1. wpilib Package 7

RobotPy WPILib Documentation, Release master

Returns The acceleration along the y axis in g-forces

ADXL345_SPI.getZ()
Get the z axis acceleration

Returns The acceleration along the z axis in g-forces

ADXL345_SPI.kAddress_MultiByte = 64

ADXL345_SPI.kAddress_Read = 128

ADXL345_SPI.kDataFormatRegister = 49

ADXL345_SPI.kDataFormat_FullRes = 8

ADXL345_SPI.kDataFormat_IntInvert = 32

ADXL345_SPI.kDataFormat_Justify = 4

ADXL345_SPI.kDataFormat_SPI = 64

ADXL345_SPI.kDataFormat_SelfTest = 128

ADXL345_SPI.kDataRegister = 50

ADXL345_SPI.kGsPerLSB = 0.00390625

ADXL345_SPI.kPowerCtlRegister = 45

ADXL345_SPI.kPowerCtl_AutoSleep = 16

ADXL345_SPI.kPowerCtl_Link = 32

ADXL345_SPI.kPowerCtl_Measure = 8

ADXL345_SPI.kPowerCtl_Sleep = 4

ADXL345_SPI.setRange(range)
Set the measuring range of the accelerometer.

Parameters range (ADXL345_SPI.Range) – The maximum acceleration, positive or nega-
tive, that the accelerometer will measure.

ADXL362

class wpilib.ADXL362(range, port=None)
Bases: wpilib.SensorBase

ADXL362 SPI Accelerometer.

This class allows access to an Analog Devices ADXL362 3-axis accelerometer.

Constructor.

Parameters

• range (ADXL362.Range) – The range (+ or -) that the accelerometer will measure.

• port (SPI.Port) – The SPI port that the accelerometer is connected to

class Axes
Bases: object

kX = 0

kY = 2

kZ = 4

8 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

class ADXL362.Range
Bases: object

k16G = 3

k2G = 0

k4G = 1

k8G = 2

ADXL362.free()

ADXL362.getAcceleration(axis)
Get the acceleration of one axis in Gs.

Parameters axis – The axis to read from.

Returns An object containing the acceleration measured on each axis in Gs.

ADXL362.getAccelerations()
Get the acceleration of all axes in Gs.

Returns X,Y,Z tuple of acceleration measured on all axes in Gs.

ADXL362.getX()
Get the x axis acceleration

Returns The acceleration along the x axis in g-forces

ADXL362.getY()
Get the y axis acceleration

Returns The acceleration along the y axis in g-forces

ADXL362.getZ()
Get the z axis acceleration

Returns The acceleration along the z axis in g-forces

ADXL362.kDataRegister = 14

ADXL362.kFilterCtlRegister = 44

ADXL362.kFilterCtl_ODR_100Hz = 3

ADXL362.kFilterCtl_Range2G = 0

ADXL362.kFilterCtl_Range4G = 64

ADXL362.kFilterCtl_Range8G = 128

ADXL362.kPartIdRegister = 2

ADXL362.kPowerCtlRegister = 45

ADXL362.kPowerCtl_AutoSleep = 4

ADXL362.kPowerCtl_Measure = 2

ADXL362.kPowerCtl_UltraLowNoise = 32

ADXL362.kRegRead = 11

ADXL362.kRegWrite = 10

ADXL362.setRange(range)
Set the measuring range of the accelerometer.

1.1. wpilib Package 9

RobotPy WPILib Documentation, Release master

Parameters range (ADXL362.Range) – The maximum acceleration, positive or negative,
that the accelerometer will measure.

ADXRS450_Gyro

class wpilib.ADXRS450_Gyro(port=None)
Bases: wpilib.GyroBase

Use a rate gyro to return the robots heading relative to a starting position. The Gyro class tracks the robots
heading based on the starting position. As the robot rotates the new heading is computed by integrating the rate
of rotation returned by the sensor. When the class is instantiated, it does a short calibration routine where it
samples the gyro while at rest to determine the default offset. This is subtracted from each sample to determine
the heading.

This class is for the digital ADXRS450 gyro sensor that connects via SPI.

Constructor.

Parameters port (SPI.Port) – The SPI port that the gyro is connected to

calibrate()
Calibrate the gyro by running for a number of samples and computing the center value. Then use the center
value as the Accumulator center value for subsequent measurements.

It’s important to make sure that the robot is not moving while the centering calculations are in progress,
this is typically done when the robot is first turned on while it’s sitting at rest before the competition starts.

Note: Usually you don’t need to call this, as it’s called when the object is first created. If you do, it will
freeze your robot for 5 seconds

free()
Delete (free) the spi port used for the gyro and stop accumulating.

getAngle()
Return the actual angle in degrees that the robot is currently facing.

The angle is based on the current accumulator value corrected by the oversampling rate, the gyro type and
the A/D calibration values. The angle is continuous, that is it will continue from 360 to 361 degrees. This
allows algorithms that wouldn’t want to see a discontinuity in the gyro output as it sweeps past from 360
to 0 on the second time around.

Returns the current heading of the robot in degrees. This heading is based on integration of the
returned rate from the gyro.

getRate()
Return the rate of rotation of the gyro

The rate is based on the most recent reading of the gyro value

Returns the current rate in degrees per second

kCalibrationSampleTime = 5.0

kDegreePerSecondPerLSB = 0.0125

kFaultRegister = 10

kHiCSTRegister = 6

kLoCSTRegister = 4

10 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

kPIDRegister = 12

kQuadRegister = 8

kRateRegister = 0

kSNHighRegister = 14

kSNLowRegister = 16

kSamplePeriod = 0.001

kTemRegister = 2

reset()
Reset the gyro. Resets the gyro to a heading of zero. This can be used if there is significant drift in the
gyro and it needs to be recalibrated after it has been running.

AnalogAccelerometer

class wpilib.AnalogAccelerometer(channel)
Bases: wpilib.LiveWindowSendable

Analog Accelerometer

The accelerometer reads acceleration directly through the sensor. Many sensors have multiple axis and can be
treated as multiple devices. Each is calibrated by finding the center value over a period of time.

Constructor. Create a new instance of Accelerometer from either an existing AnalogChannel or from an analog
channel port index.

Parameters channel – port index or an already initialized AnalogInput

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController

kDisplacement = 0

kRate = 1

AnalogAccelerometer.free()

AnalogAccelerometer.getAcceleration()
Return the acceleration in Gs.

The acceleration is returned units of Gs.

Returns The current acceleration of the sensor in Gs.

Return type float

AnalogAccelerometer.getPIDSourceType()

AnalogAccelerometer.pidGet()
Get the Acceleration for the PID Source parent.

Returns The current acceleration in Gs.

Return type float

AnalogAccelerometer.setPIDSourceType(pidSource)
Set which parameter you are using as a process control variable.

1.1. wpilib Package 11

RobotPy WPILib Documentation, Release master

Parameters pidSource (PIDSource.PIDSourceType) – An enum to select the param-
eter.

AnalogAccelerometer.setSensitivity(sensitivity)
Set the accelerometer sensitivity.

This sets the sensitivity of the accelerometer used for calculating the acceleration. The sensitivity varies
by accelerometer model. There are constants defined for various models.

Parameters sensitivity (float) – The sensitivity of accelerometer in Volts per G.

AnalogAccelerometer.setZero(zero)
Set the voltage that corresponds to 0 G.

The zero G voltage varies by accelerometer model. There are constants defined for various models.

Parameters zero (float) – The zero G voltage.

AnalogGyro

class wpilib.AnalogGyro(channel, center=None, offset=None)
Bases: wpilib.GyroBase

Interface to a gyro device via an AnalogInput

Use a rate gyro to return the robots heading relative to a starting position. The Gyro class tracks the robots
heading based on the starting position. As the robot rotates the new heading is computed by integrating the rate
of rotation returned by the sensor. When the class is instantiated, it does a short calibration routine where it
samples the gyro while at rest to determine the default offset. This is subtracted from each sample to determine
the heading.

Gyro constructor.

Also initializes the gyro. Calibrate the gyro by running for a number of samples and computing the center value.
Then use the center value as the Accumulator center value for subsequent measurements. It’s important to make
sure that the robot is not moving while the centering calculations are in progress, this is typically done when the
robot is first turned on while it’s sitting at rest before the competition starts.

Parameters

• channel – The analog channel index or AnalogInput object that the gyro is connected to.
Gyros can only be used on on-board channels 0-1.

• center (int) – Preset uncalibrated value to use as the accumulator center value

• offset (float) – Preset uncalibrated value to use as the gyro offset

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController

kDisplacement = 0

kRate = 1

AnalogGyro.calibrate()

See Gyro.calibrate()

AnalogGyro.free()

See Gyro.free()

AnalogGyro.getAngle()

12 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

See Gyro.getAngle()

AnalogGyro.getCenter()
Return the gyro center value set during calibration to use as a future preset

Returns the current center value

AnalogGyro.getOffset()
Return the gyro offset value set during calibration to use as a future preset

Returns the current offset value

AnalogGyro.getRate()

See Gyro.getRate()

AnalogGyro.kAverageBits = 0

AnalogGyro.kCalibrationSampleTime = 5.0

AnalogGyro.kDefaultVoltsPerDegreePerSecond = 0.007

AnalogGyro.kOversampleBits = 10

AnalogGyro.kSamplesPerSecond = 50.0

AnalogGyro.reset()

See Gyro.reset()

AnalogGyro.setDeadband(volts)
Set the size of the neutral zone. Any voltage from the gyro less than this amount from the center is
considered stationary. Setting a deadband will decrease the amount of drift when the gyro isn’t rotating,
but will make it less accurate.

Parameters volts (float) – The size of the deadband in volts

AnalogGyro.setSensitivity(voltsPerDegreePerSecond)
Set the gyro sensitivity. This takes the number of volts/degree/second sensitivity of the gyro and uses it in
subsequent calculations to allow the code to work with multiple gyros. This value is typically found in the
gyro datasheet.

Parameters voltsPerDegreePerSecond (float) – The sensitivity in
Volts/degree/second

AnalogInput

class wpilib.AnalogInput(channel)
Bases: wpilib.SensorBase

Analog input

Each analog channel is read from hardware as a 12-bit number representing 0V to 5V.

Connected to each analog channel is an averaging and oversampling engine. This engine accumulates the
specified (by setAverageBits() and setOversampleBits()) number of samples before returning a
new value. This is not a sliding window average. The only difference between the oversampled samples and the
averaged samples is that the oversampled samples are simply accumulated effectively increasing the resolution,
while the averaged samples are divided by the number of samples to retain the resolution, but get more stable
values.

Construct an analog channel. :param channel: The channel number to represent. 0-3 are on-board 4-7 are on the
MXP port.

1.1. wpilib Package 13

RobotPy WPILib Documentation, Release master

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController

kDisplacement = 0

kRate = 1

AnalogInput.channels = <wpilib.resource.Resource object>

AnalogInput.free()

AnalogInput.getAccumulatorCount()
Read the number of accumulated values.

Read the count of the accumulated values since the accumulator was last reset().

Returns The number of times samples from the channel were accumulated.

AnalogInput.getAccumulatorOutput()
Read the accumulated value and the number of accumulated values atomically.

This function reads the value and count from the FPGA atomically. This can be used for averaging.

Returns tuple of (value, count)

AnalogInput.getAccumulatorValue()
Read the accumulated value.

Read the value that has been accumulating. The accumulator is attached after the oversample and average
engine.

Returns The 64-bit value accumulated since the last reset().

AnalogInput.getAverageBits()
Get the number of averaging bits. This gets the number of averaging bits from the FPGA. The actual
number of averaged samples is 2^bits. The averaging is done automatically in the FPGA.

Returns The number of averaging bits.

AnalogInput.getAverageValue()
Get a sample from the output of the oversample and average engine for this channel. The sample is 12-bit
+ the bits configured in setOversampleBits(). The value configured in setAverageBits() will
cause this value to be averaged 2**bits number of samples. This is not a sliding window. The sample will
not change until 2^(OversampleBits + AverageBits) samples have been acquired from this channel. Use
getAverageVoltage() to get the analog value in calibrated units.

Returns A sample from the oversample and average engine for this channel.

AnalogInput.getAverageVoltage()
Get a scaled sample from the output of the oversample and average engine for this channel. The value is
scaled to units of Volts using the calibrated scaling data from getLSBWeight() and getOffset().
Using oversampling will cause this value to be higher resolution, but it will update more slowly. Using
averaging will cause this value to be more stable, but it will update more slowly.

Returns A scaled sample from the output of the oversample and average engine for this channel.

AnalogInput.getChannel()
Get the channel number.

Returns The channel number.

static AnalogInput.getGlobalSampleRate()
Get the current sample rate.

14 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

This assumes one entry in the scan list. This is a global setting for all channels.

Returns Sample rate.

AnalogInput.getLSBWeight()
Get the factory scaling least significant bit weight constant. The least significant bit weight constant for
the channel that was calibrated in manufacturing and stored in an eeprom.

Volts = ((LSB_Weight * 1e-9) * raw) - (Offset * 1e-9)

Returns Least significant bit weight.

AnalogInput.getOffset()
Get the factory scaling offset constant. The offset constant for the channel that was calibrated in manufac-
turing and stored in an eeprom.

Volts = ((LSB_Weight * 1e-9) * raw) - (Offset * 1e-9)

Returns Offset constant.

AnalogInput.getOversampleBits()
Get the number of oversample bits. This gets the number of oversample bits from the FPGA. The actual
number of oversampled values is 2^bits. The oversampling is done automatically in the FPGA.

Returns The number of oversample bits.

AnalogInput.getPIDSourceType()

See PIDSource.getPIDSourceType()

AnalogInput.getValue()
Get a sample straight from this channel. The sample is a 12-bit value representing the 0V to 5V range of
the A/D converter. The units are in A/D converter codes. Use getVoltage() to get the analog value in
calibrated units.

Returns A sample straight from this channel.

AnalogInput.getVoltage()
Get a scaled sample straight from this channel. The value is scaled to units of Volts using the calibrated
scaling data from getLSBWeight() and getOffset().

Returns A scaled sample straight from this channel.

AnalogInput.initAccumulator()
Initialize the accumulator.

AnalogInput.isAccumulatorChannel()
Is the channel attached to an accumulator.

Returns The analog channel is attached to an accumulator.

AnalogInput.kAccumulatorChannels = (0, 1)

AnalogInput.kAccumulatorSlot = 1

AnalogInput.pidGet()
Get the average voltage for use with PIDController

Returns the average voltage

AnalogInput.port

AnalogInput.resetAccumulator()
Resets the accumulator to the initial value.

1.1. wpilib Package 15

RobotPy WPILib Documentation, Release master

AnalogInput.setAccumulatorCenter(center)
Set the center value of the accumulator.

The center value is subtracted from each A/D value before it is added to the accumulator. This is used for
the center value of devices like gyros and accelerometers to make integration work and to take the device
offset into account when integrating.

This center value is based on the output of the oversampled and averaged source from channel 1. Because
of this, any non-zero oversample bits will affect the size of the value for this field.

AnalogInput.setAccumulatorDeadband(deadband)
Set the accumulator’s deadband.

AnalogInput.setAccumulatorInitialValue(initialValue)
Set an initial value for the accumulator.

This will be added to all values returned to the user.

Parameters initialValue – The value that the accumulator should start from when reset.

AnalogInput.setAverageBits(bits)
Set the number of averaging bits. This sets the number of averaging bits. The actual number of averaged
samples is 2^bits. The averaging is done automatically in the FPGA.

Parameters bits – The number of averaging bits.

static AnalogInput.setGlobalSampleRate(samplesPerSecond)
Set the sample rate per channel.

This is a global setting for all channels. The maximum rate is 500kS/s divided by the number of channels
in use. This is 62500 samples/s per channel if all 8 channels are used.

Parameters samplesPerSecond – The number of samples per second.

AnalogInput.setOversampleBits(bits)
Set the number of oversample bits. This sets the number of oversample bits. The actual number of
oversampled values is 2^bits. The oversampling is done automatically in the FPGA.

Parameters bits – The number of oversample bits.

AnalogInput.setPIDSourceType(pidSource)

See PIDSource.setPIDSourceType()

AnalogOutput

class wpilib.AnalogOutput(channel)
Bases: wpilib.SensorBase

Analog output

Construct an analog output on a specified MXP channel.

Parameters channel – The channel number to represent.

channels = <wpilib.resource.Resource object>

free()
Channel destructor.

getChannel()
Get the channel of this AnalogOutput.

getVoltage()

16 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

port

setVoltage(voltage)

AnalogPotentiometer

class wpilib.AnalogPotentiometer(channel, fullRange=1.0, offset=0.0)
Bases: wpilib.LiveWindowSendable

Reads a potentiometer via an AnalogInput

Analog potentiometers read in an analog voltage that corresponds to a position. The position is in whichever
units you choose, by way of the scaling and offset constants passed to the constructor.

AnalogPotentiometer constructor.

Use the fullRange and offset values so that the output produces meaningful values. I.E: you have a 270 degree
potentiometer and you want the output to be degrees with the halfway point as 0 degrees. The fullRange value
is 270.0(degrees) and the offset is -135.0 since the halfway point after scaling is 135 degrees.

Parameters

• channel (int or AnalogInput) – The analog channel this potentiometer is plugged into.

• fullRange (float) – The scaling to multiply the fraction by to get a meaningful unit.
Defaults to 1.0 if unspecified.

• offset (float) – The offset to add to the scaled value for controlling the zero value.
Defaults to 0.0 if unspecified.

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController

kDisplacement = 0

kRate = 1

AnalogPotentiometer.free()

AnalogPotentiometer.get()
Get the current reading of the potentiometer.

Returns The current position of the potentiometer.

Return type float

AnalogPotentiometer.getPIDSourceType()

AnalogPotentiometer.pidGet()
Implement the PIDSource interface.

Returns The current reading.

Return type float

AnalogPotentiometer.setPIDSourceType(pidSource)
Set which parameter you are using as a process control variable.

Parameters pidSource (PIDSource.PIDSourceType) – An enum to select the param-
eter.

1.1. wpilib Package 17

RobotPy WPILib Documentation, Release master

AnalogTrigger

class wpilib.AnalogTrigger(channel)
Bases: object

Converts an analog signal into a digital signal

An analog trigger is a way to convert an analog signal into a digital signal using resources built into the FPGA.
The resulting digital signal can then be used directly or fed into other digital components of the FPGA such as
the counter or encoder modules. The analog trigger module works by comparing analog signals to a voltage
range set by the code. The specific return types and meanings depend on the analog trigger mode in use.

Constructor for an analog trigger given a channel number or analog input.

Parameters channel – the port index or AnalogInput to use for the analog trigger. Treated as
an AnalogInput if the provided object has a getChannel function.

class AnalogTriggerType
Bases: object

Defines the state in which the AnalogTrigger triggers

kFallingPulse = 3

kInWindow = 0

kRisingPulse = 2

kState = 1

AnalogTrigger.createOutput(type)
Creates an AnalogTriggerOutput object. Gets an output object that can be used for routing. Caller
is responsible for deleting the AnalogTriggerOutput object.

Parameters type – An enum of the type of output object to create.

Returns An AnalogTriggerOutput object.

AnalogTrigger.free()
Release the resources used by this object

AnalogTrigger.getInWindow()
Return the InWindow output of the analog trigger. True if the analog input is between the upper and lower
limits.

Returns The InWindow output of the analog trigger.

AnalogTrigger.getIndex()
Return the index of the analog trigger. This is the FPGA index of this analog trigger instance.

Returns The index of the analog trigger.

AnalogTrigger.getTriggerState()
Return the TriggerState output of the analog trigger. True if above upper limit. False if below lower limit.
If in Hysteresis, maintain previous state.

Returns The TriggerState output of the analog trigger.

AnalogTrigger.port

AnalogTrigger.setAveraged(useAveragedValue)
Configure the analog trigger to use the averaged vs. raw values. If the value is true, then the averaged
value is selected for the analog trigger, otherwise the immediate value is used.

Parameters useAveragedValue – True to use an averaged value, False otherwise

18 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

AnalogTrigger.setFiltered(useFilteredValue)
Configure the analog trigger to use a filtered value. The analog trigger will operate with a 3 point average
rejection filter. This is designed to help with 360 degree pot applications for the period where the pot
crosses through zero.

Parameters useFilteredValue – True to use a filterd value, False otherwise

AnalogTrigger.setLimitsRaw(lower, upper)
Set the upper and lower limits of the analog trigger. The limits are given in ADC codes. If oversampling
is used, the units must be scaled appropriately.

Parameters

• lower – the lower raw limit

• upper – the upper raw limit

AnalogTrigger.setLimitsVoltage(lower, upper)
Set the upper and lower limits of the analog trigger. The limits are given as floating point voltage values.

Parameters

• lower – the lower voltage limit

• upper – the upper voltage limit

AnalogTriggerOutput

class wpilib.AnalogTriggerOutput(trigger, outputType)
Bases: wpilib.DigitalSource

Represents a specific output from an AnalogTrigger

This class is used to get the current output value and also as a DigitalSource to provide routing of an output
to digital subsystems on the FPGA such as Counter, Encoder:, and :class:.Interrupt‘.

The TriggerState output indicates the primary output value of the trigger. If the analog signal is less than the
lower limit, the output is False. If the analog value is greater than the upper limit, then the output is True. If the
analog value is in between, then the trigger output state maintains its most recent value.

The InWindow output indicates whether or not the analog signal is inside the range defined by the limits.

The RisingPulse and FallingPulse outputs detect an instantaneous transition from above the upper limit to below
the lower limit, and vise versa. These pulses represent a rollover condition of a sensor and can be routed to an
up / down couter or to interrupts. Because the outputs generate a pulse, they cannot be read directly. To help
ensure that a rollover condition is not missed, there is an average rejection filter available that operates on the
upper 8 bits of a 12 bit number and selects the nearest outlyer of 3 samples. This will reject a sample that is
(due to averaging or sampling) errantly between the two limits. This filter will fail if more than one sample in
a row is errantly in between the two limits. You may see this problem if attempting to use this feature with a
mechanical rollover sensor, such as a 360 degree no-stop potentiometer without signal conditioning, because
the rollover transition is not sharp / clean enough. Using the averaging engine may help with this, but rotational
speeds of the sensor will then be limited.

Create an object that represents one of the four outputs from an analog trigger.

Because this class derives from DigitalSource, it can be passed into routing functions for Counter, Encoder, etc.

Parameters

• trigger – The trigger for which this is an output.

• outputType – An enum that specifies the output on the trigger to represent.

1.1. wpilib Package 19

RobotPy WPILib Documentation, Release master

class AnalogTriggerType
Bases: object

Defines the state in which the AnalogTrigger triggers

kFallingPulse = 3

kInWindow = 0

kRisingPulse = 2

kState = 1

AnalogTriggerOutput.free()

AnalogTriggerOutput.get()
Get the state of the analog trigger output.

Returns The state of the analog trigger output.

Return type AnalogTriggerType

AnalogTriggerOutput.getAnalogTriggerTypeForRouting()

AnalogTriggerOutput.getChannel()

AnalogTriggerOutput.getPortHandleForRouting()

BuiltInAccelerometer

class wpilib.BuiltInAccelerometer(range=2)
Bases: wpilib.LiveWindowSendable

Built-in accelerometer device

This class allows access to the roboRIO’s internal accelerometer.

Constructor.

Parameters range (Accelerometer.Range) – The range the accelerometer will measure. De-
faults to +/-8g if unspecified.

class Range
Bases: object

k16G = 3

k2G = 0

k4G = 1

k8G = 2

BuiltInAccelerometer.free()

BuiltInAccelerometer.getX()

Returns The acceleration of the roboRIO along the X axis in g-forces

Return type float

BuiltInAccelerometer.getY()

Returns The acceleration of the roboRIO along the Y axis in g-forces

Return type float

BuiltInAccelerometer.getZ()

20 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Returns The acceleration of the roboRIO along the Z axis in g-forces

Return type float

BuiltInAccelerometer.setRange(range)
Set the measuring range of the accelerometer.

Parameters range (BuiltInAccelerometer.Range) – The maximum acceleration,
positive or negative, that the accelerometer will measure.

CameraServer

class wpilib.CameraServer
Bases: object

Provides a way to launch an out of process cscore-based camera service instance, for streaming or for image
processing.

Note: This does not correspond directly to the wpilib CameraServer object; that can be found as cscore.
CameraServer. However, you should not use cscore directly from your robot code, see the documentation
for details

classmethod is_alive()

Returns True if the CameraServer is still alive

classmethod launch(vision_py=None)
Launches the CameraServer process in autocapture mode or using a user-specified python script

Parameters vision_py – If specified, this is the relative path to a filename with a function in
it

Example usage:

wpilib.CameraServer.launch("vision.py:main")

Warning: You must have robotpy-cscore installed, or this function will fail without returning an error
(you will see an error in the console).

CANJaguar

class wpilib.CANJaguar(*args, **kwargs)
Bases: object

CANTalon

class wpilib.CANTalon(*args, **kwargs)
Bases: object

1.1. wpilib Package 21

RobotPy WPILib Documentation, Release master

Compressor

class wpilib.Compressor(module=None)
Bases: wpilib.SensorBase

Class for operating a compressor connected to a PCM (Pneumatic Control Module).

The PCM will automatically run in closed loop mode by default whenever a Solenoid object is created. For
most cases the Compressor object does not need to be instantiated or used in a robot program. This class is only
required in cases where the robot program needs a more detailed status of the compressor or to enable/disable
closed loop control.

Note: you cannot operate the compressor directly from this class as doing so would circumvent the safety
provided by using the pressure switch and closed loop control. You can only turn off closed loop control,
thereby stopping the compressor from operating.

Makes a new instance of the compressor using the provided CAN device ID.

Parameters module – The PCM CAN device ID. (0 - 62 inclusive)

clearAllPCMStickyFaults()
Clear ALL sticky faults inside PCM that Compressor is wired to.

If a sticky fault is set, then it will be persistently cleared. The compressor might momentarily disable
while the flags are being cleared. Doo not call this method too frequently, otherwise normal compressor
functionality may be prevented.

If no sticky faults are set then this call will have no effect.

enabled()
Get the enabled status of the compressor.

Returns True if the compressor is on

Return type bool

getClosedLoopControl()
Gets the current operating mode of the PCM.

Returns True if compressor is operating on closed-loop mode

Return type bool

getCompressorCurrent()
Get the current being used by the compressor.

Returns Current consumed by the compressor in amps

Return type float

getCompressorCurrentTooHighFault()

Returns True if PCM is in fault state : Compressor Drive is disabled due to compressor current
being too high

getCompressorCurrentTooHighStickyFault()

Returns True if PCM sticky fault is set : Compressor is disabled due to compressor current
being too high

getCompressorNotConnectedFault()

Returns True if PCM is in fault state : Compressor does not appear to be wired, i.e. compressor
is not drawing enough current.

getCompressorNotConnectedStickyFault()

22 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Returns True if PCM sticky fault is set : Compressor does not appear to be wired, i.e. compres-
sor is not drawing enough current.

getCompressorShortedFault()

Returns True if PCM is in fault state : Compressor output appears to be shorted

getCompressorShortedStickyFault()

Returns True if PCM sticky fault is set : Compressor output appears to be shorted

getPressureSwitchValue()
Get the pressure switch value.

Returns True if the pressure is low

Return type bool

setClosedLoopControl(on)
Set the PCM in closed loop control mode.

Parameters on (bool) – If True sets the compressor to be in closed loop control mode (default)

start()
Start the compressor running in closed loop control mode.

Use the method in cases where you would like to manually stop and start the compressor for applica-
tions such as conserving battery or making sure that the compressor motor doesn’t start during critical
operations.

stop()
Stop the compressor from running in closed loop control mode.

Use the method in cases where you would like to manually stop and start the compressor for applica-
tions such as conserving battery or making sure that the compressor motor doesn’t start during critical
operations.

ControllerPower

class wpilib.ControllerPower
Bases: object

Provides access to power levels on the roboRIO

static getCurrent3V3()
Get the current output of the 3.3V rail

Returns The controller 3.3V rail output current value in Amps

Return type float

static getCurrent5V()
Get the current output of the 5V rail

Returns The controller 5V rail output current value in Amps

Return type float

static getCurrent6V()
Get the current output of the 6V rail

Returns The controller 6V rail output current value in Amps

Return type float

1.1. wpilib Package 23

RobotPy WPILib Documentation, Release master

static getEnabled3V3()
Get the enabled state of the 3.3V rail. The rail may be disabled due to a controller brownout, a short circuit
on the rail, or controller over-voltage

Returns True if enabled, False otherwise

Return type bool

static getEnabled5V()
Get the enabled state of the 5V rail. The rail may be disabled due to a controller brownout, a short circuit
on the rail, or controller over-voltage

Returns True if enabled, False otherwise

Return type bool

static getEnabled6V()
Get the enabled state of the 6V rail. The rail may be disabled due to a controller brownout, a short circuit
on the rail, or controller over-voltage

Returns True if enabled, False otherwise

Return type bool

static getFaultCount3V3()
Get the count of the total current faults on the 3.3V rail since the controller has booted

Returns The number of faults

Return type int

static getFaultCount5V()
Get the count of the total current faults on the 5V rail since the controller has booted

Returns The number of faults

Return type int

static getFaultCount6V()
Get the count of the total current faults on the 6V rail since the controller has booted

Returns The number of faults

Return type int

static getInputCurrent()
Get the input current to the robot controller

Returns The controller input current value in Amps

Return type float

static getInputVoltage()
Get the input voltage to the robot controller

Returns The controller input voltage value in Volts

Return type float

static getVoltage3V3()
Get the voltage of the 3.3V rail

Returns The controller 3.3V rail voltage value in Volts

Return type float

24 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

static getVoltage5V()
Get the voltage of the 5V rail

Returns The controller 5V rail voltage value in Volts

Return type float

static getVoltage6V()
Get the voltage of the 6V rail

Returns The controller 6V rail voltage value in Volts

Return type float

Counter

class wpilib.Counter(*args, **kwargs)
Bases: wpilib.SensorBase

Counts the number of ticks on a DigitalInput channel.

This is a general purpose class for counting repetitive events. It can return the number of counts, the period of
the most recent cycle, and detect when the signal being counted has stopped by supplying a maximum cycle
time.

All counters will immediately start counting - reset() them if you need them to be zeroed before use.

Counter constructor.

The counter will start counting immediately.

Positional arguments may be either channel numbers, DigitalSource sources, or AnalogTrigger
sources in the following order:

A “source” is any valid single-argument input to setUpSource() and setDownSource()

•(none)

•upSource

•upSource, down source

And, to keep consistency with Java wpilib. - encodingType, up source, down source, inverted

If the passed object has a getPortHandleForRouting function, it is assumed to be a DigitalSource. If the passed
object has a createOutput function, it is assumed to be an AnalogTrigger.

In addition, extra keyword parameters may be provided for mode, inverted, and encodingType.

Parameters

• upSource – The source (channel num, DigitalInput, or AnalogTrigger) that should be used
for up counting.

• downSource – The source (channel num, DigitalInput, or AnalogTrigger) that should be
used for down counting or direction control.

• mode – How and what the counter counts (see Mode). Defaults to Mode.kTwoPulse for
zero or one source, and Mode.kExternalDirection for two sources.

• inverted – Flips the direction of counting. Defaults to False if unspecified. Only used
when two sources are specified.

1.1. wpilib Package 25

RobotPy WPILib Documentation, Release master

• encodingType (Counter.EncodingType) – Either k1X or k2X to indicate 1X or
2X decoding. 4X decoding is not supported by Counter; use Encoder instead. Defaults to
k1X if unspecified. Only used when two sources are specified.

class EncodingType
Bases: object

The number of edges for the counterbase to increment or decrement on

k1X = 0

k2X = 1

k4X = 2

class Counter.Mode
Bases: object

Mode determines how and what the counter counts

kExternalDirection = 3
external direction mode

kPulseLength = 2
pulse length mode

kSemiperiod = 1
semi period mode

kTwoPulse = 0
two pulse mode

class Counter.PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController

kDisplacement = 0

kRate = 1

Counter.allocatedDownSource = False

Counter.allocatedUpSource = False

Counter.clearDownSource()
Disable the down counting source to the counter.

Counter.clearUpSource()
Disable the up counting source to the counter.

Counter.counter

Counter.free()

Counter.get()
Read the current counter value. Read the value at this instant. It may still be running, so it reflects the
current value. Next time it is read, it might have a different value.

Counter.getDirection()
The last direction the counter value changed.

Returns The last direction the counter value changed.

Return type bool

26 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Counter.getDistance()
Read the current scaled counter value. Read the value at this instant, scaled by the distance per pulse
(defaults to 1).

Returns Scaled value

Return type float

Counter.getFPGAIndex()

Returns The Counter’s FPGA index.

Counter.getPIDSourceType()

Counter.getPeriod()
Get the Period of the most recent count. Returns the time interval of the most recent count. This can be
used for velocity calculations to determine shaft speed.

Returns The period of the last two pulses in units of seconds.

Return type float

Counter.getRate()
Get the current rate of the Counter. Read the current rate of the counter accounting for the distance per
pulse value. The default value for distance per pulse (1) yields units of pulses per second.

Returns The rate in units/sec

Return type float

Counter.getSamplesToAverage()
Get the Samples to Average which specifies the number of samples of the timer to average when calculating
the period. Perform averaging to account for mechanical imperfections or as oversampling to increase
resolution.

Returns The number of samples being averaged (from 1 to 127)

Return type int

Counter.getStopped()
Determine if the clock is stopped. Determine if the clocked input is stopped based on the MaxPeriod
value set using the setMaxPeriod() method. If the clock exceeds the MaxPeriod, then the device (and
counter) are assumed to be stopped and it returns True.

Returns Returns True if the most recent counter period exceeds the MaxPeriod value set by
SetMaxPeriod.

Return type bool

Counter.pidGet()

Counter.reset()
Reset the Counter to zero. Set the counter value to zero. This doesn’t effect the running state of the counter,
just sets the current value to zero.

Counter.setDistancePerPulse(distancePerPulse)
Set the distance per pulse for this counter. This sets the multiplier used to determine the distance driven
based on the count value from the encoder. Set this value based on the Pulses per Revolution and factor in
any gearing reductions. This distance can be in any units you like, linear or angular.

Parameters distancePerPulse (float) – The scale factor that will be used to convert
pulses to useful units.

1.1. wpilib Package 27

RobotPy WPILib Documentation, Release master

Counter.setDownSource(*args, **kwargs)
Set the down counting source for the counter.

This function accepts either a digital channel index, a DigitalSource, or an AnalogTrigger as positional
arguments:

•source

•channel

•analogTrigger

•analogTrigger, triggerType

For positional arguments, if the passed object has a getChannelForRouting function, it is assumed to be a
DigitalSource. If the passed object has a createOutput function, it is assumed to be an AnalogTrigger.

Alternatively, sources and/or channels may be passed as keyword arguments. The behavior of specifying
both a source and a number for the same channel is undefined, as is passing both a positional and a keyword
argument for the same channel.

Parameters

• channel (int) – the DIO channel to use as the down source. 0-9 are on-board, 10-25
are on the MXP

• source (DigitalInput) – The digital source to count

• analogTrigger (AnalogTrigger) – The analog trigger object that is used for the
Up Source

• triggerType (AnalogTriggerType) – The analog trigger output that will trigger
the counter. Defaults to kState if not specified.

Counter.setDownSourceEdge(risingEdge, fallingEdge)
Set the edge sensitivity on an down counting source. Set the down source to either detect rising edges or
falling edges.

Parameters

• risingEdge (bool) – True to count rising edge

• fallingEdge (bool) – True to count falling edge

Counter.setExternalDirectionMode()
Set external direction mode on this counter. Counts are sourced on the Up counter input. The Down
counter input represents the direction to count.

Counter.setMaxPeriod(maxPeriod)
Set the maximum period where the device is still considered “moving”. Sets the maximum period where
the device is considered moving. This value is used to determine the “stopped” state of the counter using
the getStopped() method.

Parameters maxPeriod (float or int) – The maximum period where the counted device
is considered moving in seconds.

Counter.setPIDSourceType(pidSource)
Set which parameter of the encoder you are using as a process control variable. The counter class supports
the rate and distance parameters.

Parameters pidSource (Counter.PIDSourceType) – An enum to select the parameter.

Counter.setPulseLengthMode(threshold)
Configure the counter to count in up or down based on the length of the input pulse. This mode is most
useful for direction sensitive gear tooth sensors.

28 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Parameters threshold (float, int) – The pulse length beyond which the counter counts
the opposite direction. Units are seconds.

Counter.setReverseDirection(reverseDirection)
Set the Counter to return reversed sensing on the direction. This allows counters to change the direction
they are counting in the case of 1X and 2X quadrature encoding only. Any other counter mode isn’t
supported.

Parameters reverseDirection (bool) – True if the value counted should be negated.

Counter.setSamplesToAverage(samplesToAverage)
Set the Samples to Average which specifies the number of samples of the timer to average when calculating
the period. Perform averaging to account for mechanical imperfections or as oversampling to increase
resolution.

Parameters samplesToAverage (int) – The number of samples to average from 1 to 127.

Counter.setSemiPeriodMode(highSemiPeriod)
Set Semi-period mode on this counter. Counts up on both rising and falling edges.

Parameters highSemiPeriod (bool) – True to count up on both rising and falling

Counter.setUpDownCounterMode()
Set standard up / down counting mode on this counter. Up and down counts are sourced independently
from two inputs.

Counter.setUpSource(*args, **kwargs)
Set the up counting source for the counter.

This function accepts either a digital channel index, a DigitalSource, or an AnalogTrigger as positional
arguments:

•source

•channel

•analogTrigger

•analogTrigger, triggerType

For positional arguments, if the passed object has a getPortHandleForRouting function, it is assumed to be
a DigitalSource. If the passed object has a createOutput function, it is assumed to be an AnalogTrigger.

Alternatively, sources and/or channels may be passed as keyword arguments. The behavior of specifying
both a source and a number for the same channel is undefined, as is passing both a positional and a keyword
argument for the same channel.

Parameters

• channel (int) – the DIO channel to use as the up source. 0-9 are on-board, 10-25 are
on the MXP

• source (DigitalInput) – The digital source to count

• analogTrigger (AnalogTrigger) – The analog trigger object that is used for the
Up Source

• triggerType (AnalogTriggerType) – The analog trigger output that will trigger
the counter. Defaults to kState if not specified.

Counter.setUpSourceEdge(risingEdge, fallingEdge)
Set the edge sensitivity on an up counting source. Set the up source to either detect rising edges or falling
edges.

Parameters

1.1. wpilib Package 29

RobotPy WPILib Documentation, Release master

• risingEdge (bool) – True to count rising edge

• fallingEdge (bool) – True to count falling edge

Counter.setUpdateWhenEmpty(enabled)
Select whether you want to continue updating the event timer output when there are no samples captured.
The output of the event timer has a buffer of periods that are averaged and posted to a register on the FPGA.
When the timer detects that the event source has stopped (based on the MaxPeriod) the buffer of samples
to be averaged is emptied. If you enable update when empty, you will be notified of the stopped source
and the event time will report 0 samples. If you disable update when empty, the most recent average will
remain on the output until a new sample is acquired. You will never see 0 samples output (except when
there have been no events since an FPGA reset) and you will likely not see the stopped bit become true
(since it is updated at the end of an average and there are no samples to average).

Parameters enabled (bool) – True to continue updating

DigitalGlitchFilter

class wpilib.DigitalGlitchFilter
Bases: wpilib.SensorBase

Class to enable glitch filtering on a set of digital inputs. This class will manage adding and removing digital
inputs from a FPGA glitch filter. The filter lets the user configure the time that an input must remain high or low
before it is classified as high or low.

add(input)
Assigns the DigitalSource, Encoder, or Counter to this glitch filter.

Parameters input – The object to add

filterAllocated = [False, False, False]

free()

getPeriodCycles()
Gets the number of FPGA cycles that the input must hold steady to pass through this glitch filter.

Returns The number of cycles.

getPeriodNanoSeconds()
Gets the number of nanoseconds that the input must hold steady to pass through this glitch filter.

Returns The number of nanoseconds.

mutex = <unlocked _thread.lock object>

remove(input)
Removes this filter from the given input object

setPeriodCycles(fpga_cycles)
Sets the number of FPGA cycles that the input must hold steady to pass through this glitch filter.

Parameters fpga_cycles – The number of FPGA cycles.

setPeriodNanoSeconds(nanoseconds)
Sets the number of nanoseconds that the input must hold steady to pass through this glitch filter.

Parameters nanoseconds – The number of nanoseconds.

30 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

DigitalInput

class wpilib.DigitalInput(channel)
Bases: wpilib.DigitalSource

Reads a digital input.

This class will read digital inputs and return the current value on the channel. Other devices such as encoders,
gear tooth sensors, etc. that are implemented elsewhere will automatically allocate digital inputs and outputs as
required. This class is only for devices like switches etc. that aren’t implemented anywhere else.

Create an instance of a Digital Input class. Creates a digital input given a channel.

Parameters channel (int) – the DIO channel for the digital input. 0-9 are on-board, 10-25 are
on the MXP

free()

get()
Get the value from a digital input channel. Retrieve the value of a single digital input channel from the
FPGA.

Returns the state of the digital input

Return type bool

getAnalogTriggerTypeForRouting()
Get the analog trigger type.

Returns false

Return type int

getChannel()
Get the channel of the digital input.

Returns The GPIO channel number that this object represents.

Return type int

getPortHandleForRouting()
Get the HAL Port Handle.

Returns The HAL Handle to the specified source

isAnalogTrigger()
Is this an analog trigger.

Returns true if this is an analog trigger

Return type bool

DigitalOutput

class wpilib.DigitalOutput(channel)
Bases: wpilib.DigitalSource

Writes to a digital output

Other devices that are implemented elsewhere will automatically allocate digital inputs and outputs as required.

Create an instance of a digital output.

1.1. wpilib Package 31

RobotPy WPILib Documentation, Release master

Parameters channel – the DIO channel for the digital output. 0-9 are on-board, 10-25 are on the
MXP

disablePWM()
Change this line from a PWM output back to a static Digital Output line.

Free up one of the 6 DO PWM generator resources that were in use.

enablePWM(initialDutyCycle)
Enable a PWM Output on this line.

Allocate one of the 6 DO PWM generator resources.

Supply the initial duty-cycle to output so as to avoid a glitch when first starting.

The resolution of the duty cycle is 8-bit for low frequencies (1kHz or less) but is reduced the higher the
frequency of the PWM signal is.

Parameters initialDutyCycle (float) – The duty-cycle to start generating. [0..1]

free()
Free the resources associated with a digital output.

get()
Gets the value being output from the Digital Output.

Returns the state of the digital output

Return type bool

getAnalogTriggerTypeForRouting()
Get the analog trigger type.

Returns false

Return type int

getChannel()

Returns The GPIO channel number that this object represents.

getPortHandleForRouting()
Get the HAL Port Handle.

Returns The HAL Handle to the specified source

isAnalogTrigger()
Is this an analog trigger.

Returns true if this is an analog trigger

Return type bool

isPulsing()
Determine if the pulse is still going. Determine if a previously started pulse is still going.

Returns True if pulsing

Return type bool

pulse(pulseLength, *args)
Generate a single pulse. There can only be a single pulse going at any time.

Parameters

• channel – Unused. Deprecated 2017.1.1.

• pulseLength (float) – The length of the pulse.

32 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

pwmGenerator

set(value)
Set the value of a digital output.

Parameters value (bool) – True is on, off is False

setPWMRate(rate)
Change the PWM frequency of the PWM output on a Digital Output line.

The valid range is from 0.6 Hz to 19 kHz. The frequency resolution is logarithmic.

There is only one PWM frequency for all channnels.

Parameters rate (float) – The frequency to output all digital output PWM signals.

updateDutyCycle(dutyCycle)
Change the duty-cycle that is being generated on the line.

The resolution of the duty cycle is 8-bit for low frequencies (1kHz or less) but is reduced the higher the
frequency of the PWM signal is.

Parameters dutyCycle (float) – The duty-cycle to change to. [0..1]

DigitalSource

class wpilib.DigitalSource(channel, input)
Bases: wpilib.InterruptableSensorBase

DigitalSource Interface. The DigitalSource represents all the possible inputs for a counter or a quadrature
encoder. The source may be either a digital input or an analog input. If the caller just provides a channel, then a
digital input will be constructed and freed when finished for the source. The source can either be a digital input
or analog trigger but not both.

Parameters

• channel (int) – Port for the digital input

• input (int) – True if input, False otherwise

channels = <wpilib.resource.Resource object>

free()

getChannel()

handle

isAnalogTrigger()

DoubleSolenoid

class wpilib.DoubleSolenoid(*args, **kwargs)
Bases: wpilib.SolenoidBase

Controls 2 channels of high voltage Digital Output on the PCM.

The DoubleSolenoid class is typically used for pneumatics solenoids that have two positions controlled by two
separate channels.

Constructor.

Arguments can be supplied as positional or keyword. Acceptable positional argument combinations are:

1.1. wpilib Package 33

RobotPy WPILib Documentation, Release master

•forwardChannel, reverseChannel

•moduleNumber, forwardChannel, reverseChannel

Alternatively, the above names can be used as keyword arguments.

Parameters

• moduleNumber – The module number of the solenoid module to use.

• forwardChannel – The forward channel number on the module to control (0..7)

• reverseChannel – The reverse channel number on the module to control (0..7)

class Value
Bases: object

Possible values for a DoubleSolenoid.

kForward = 1

kOff = 0

kReverse = 2

DoubleSolenoid.free()
Mark the solenoid as freed.

DoubleSolenoid.get()
Read the current value of the solenoid.

Returns The current value of the solenoid.

Return type DoubleSolenoid.Value

DoubleSolenoid.isFwdSolenoidBlackListed()

Check if the forward solenoid is blacklisted. If a solenoid is shorted, it is added to the blacklist and
disabled until power cycle, or until faults are cleared. See clearAllPCMStickyFaults()

Returns If solenoid is disabled due to short.

DoubleSolenoid.isRevSolenoidBlackListed()

Check if the reverse solenoid is blacklisted. If a solenoid is shorted, it is added to the blacklist and dis-
abled until power cycle, or until faults are cleared. See clearAllPCMStickyFaults()

Returns If solenoid is disabled due to short.

DoubleSolenoid.set(value)
Set the value of a solenoid.

Parameters value (DoubleSolenoid.Value) – The value to set (Off, Forward, Reverse)

DriverStation

class wpilib.DriverStation
Bases: object

Provide access to the network communication data to / from the Driver Station.

DriverStation constructor.

34 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

The single DriverStation instance is created statically with the instance static member variable, you should never
create a DriverStation instance.

class Alliance
Bases: object

The robot alliance that the robot is a part of

Blue = 1

Invalid = 2

Red = 0

DriverStation.InAutonomous(entering)
Only to be used to tell the Driver Station what code you claim to be executing for diagnostic purposes only.

Parameters entering – If True, starting autonomous code; if False, leaving autonomous code

DriverStation.InDisabled(entering)
Only to be used to tell the Driver Station what code you claim to be executing for diagnostic purposes only.

Parameters entering – If True, starting disabled code; if False, leaving disabled code

DriverStation.InOperatorControl(entering)
Only to be used to tell the Driver Station what code you claim to be executing for diagnostic purposes only.

Parameters entering – If True, starting teleop code; if False, leaving teleop code

DriverStation.InTest(entering)
Only to be used to tell the Driver Station what code you claim to be executing for diagnostic purposes only.

Parameters entering – If True, starting test code; if False, leaving test code

DriverStation.getAlliance()
Get the current alliance from the FMS.

Returns The current alliance

Return type DriverStation.Alliance

DriverStation.getBatteryVoltage()
Read the battery voltage.

Returns The battery voltage in Volts.

classmethod DriverStation.getInstance()
Gets the global instance of the DriverStation

Returns DriverStation

DriverStation.getJoystickAxisType(stick, axis)
Returns the types of Axes on a given joystick port.

Parameters

• stick (int) – The joystick port number

• axis (int) – The target axis

:returns An integer that reports type of axis the axis is reporting to be

DriverStation.getJoystickIsXbox(stick)
Gets the value of isXbox on a joystick

Parameters stick (int) – The joystick port number

:returns A boolean that returns the value of isXbox

1.1. wpilib Package 35

RobotPy WPILib Documentation, Release master

DriverStation.getJoystickName(stick)
Gets the name of a joystick

Parameters stick (int) – The joystick port number

:returns The joystick name.

DriverStation.getJoystickType(stick)
Gets the value of type on a joystick

Parameters stick (int) – The joystick port number

:returns An integer that returns the value of type.

DriverStation.getLocation()
Gets the location of the team’s driver station controls.

Returns The location of the team’s driver station controls: 1, 2, or 3

DriverStation.getMatchTime()
Return the approximate match time. The FMS does not currently send the official match time to the robots,
but does send an approximate match time. The value will count down the time remaining in the current
period (auto or teleop).

Warning: This is not an official time (so it cannot be used to argue with referees or guarantee that a
function will trigger before a match ends).

The Practice Match function of the DS approximates the behaviour seen on the field.

Returns Time remaining in current match period (auto or teleop) in seconds

DriverStation.getStickAxis(stick, axis)
Get the value of the axis on a joystick. This depends on the mapping of the joystick connected to the
specified port.

Parameters

• stick (int) – The joystick port number

• axis (int) – The analog axis value to read from the joystick.

Returns The value of the axis on the joystick.

DriverStation.getStickAxisCount(stick)
Returns the number of axes on a given joystick port

Parameters stick (int) – The joystick port number

Returns The number of axes on the indicated joystick

DriverStation.getStickButton(stick, button)
The state of a button on the joystick. Button indexes begin at 1.

Parameters

• stick (int) – The joystick port number

• button (int) – The button index, beginning at 1.

Returns The state of the button.

DriverStation.getStickButtonCount(stick)
Gets the number of buttons on a joystick

Parameters stick (int) – The joystick port number

36 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Returns The number of buttons on the indicated joystick.

DriverStation.getStickButtons(stick)
The state of all the buttons on the joystick.

Parameters stick (int) – The joystick port number

Returns The state of all buttons, as a bit array.

DriverStation.getStickPOV(stick, pov)
Get the state of a POV on the joystick.

Parameters

• stick (int) – The joystick port number

• pov (int) – which POV

Returns The angle of the POV in degrees, or -1 if the POV is not pressed.

DriverStation.getStickPOVCount(stick)
Returns the number of POVs on a given joystick port

Parameters stick (int) – The joystick port number

Returns The number of POVs on the indicated joystick

DriverStation.isAutonomous()
Gets a value indicating whether the Driver Station requires the robot to be running in autonomous mode.

Returns True if autonomous mode should be enabled, False otherwise.

DriverStation.isBrownedOut()
Check if the system is browned out.

Returns True if the system is browned out.

DriverStation.isDSAttached()
Is the driver station attached to the robot?

Returns True if the robot is being controlled by a driver station.

DriverStation.isDisabled()
Gets a value indicating whether the Driver Station requires the robot to be disabled.

Returns True if the robot should be disabled, False otherwise.

DriverStation.isEnabled()
Gets a value indicating whether the Driver Station requires the robot to be enabled.

Returns True if the robot is enabled, False otherwise.

DriverStation.isFMSAttached()
Is the driver station attached to a Field Management System?

Returns True if the robot is competing on a field being controlled by a Field Management Sys-
tem

DriverStation.isNewControlData()
Has a new control packet from the driver station arrived since the last time this function was called?

Returns True if the control data has been updated since the last call.

DriverStation.isOperatorControl()
Gets a value indicating whether the Driver Station requires the robot to be running in operator-controlled
mode.

1.1. wpilib Package 37

RobotPy WPILib Documentation, Release master

Returns True if operator-controlled mode should be enabled, False otherwise.

DriverStation.isSysActive()
Gets a value indicating whether the FPGA outputs are enabled. The outputs may be disabled if the robot
is disabled or e-stopped, the watdhog has expired, or if the roboRIO browns out.

Returns True if the FPGA outputs are enabled.

DriverStation.isTest()
Gets a value indicating whether the Driver Station requires the robot to be running in test mode.

Returns True if test mode should be enabled, False otherwise.

DriverStation.kJoystickPorts = 6
The number of joystick ports

DriverStation.release()
Kill the thread

static DriverStation.reportError(error, printTrace)
Report error to Driver Station, and also prints error to sys.stderr. Optionally appends stack trace to error
message.

Parameters printTrace – If True, append stack trace to error string

static DriverStation.reportWarning(error, printTrace)
Report warning to Driver Station, and also prints error to sys.stderr. Optionally appends stack trace to
error message.

Parameters printTrace – If True, append stack trace to warning string

DriverStation.waitForData(timeout=None)
Wait for new data or for timeout, which ever comes first. If timeout is None, wait for new data only.

Parameters timeout – The maximum time in seconds to wait.

Returns True if there is new data, otherwise False

Encoder

class wpilib.Encoder(*args, **kwargs)
Bases: wpilib.SensorBase

Class to read quadrature encoders.

Quadrature encoders are devices that count shaft rotation and can sense direction. The output of the Encoder
class is an integer that can count either up or down, and can go negative for reverse direction counting. When
creating Encoders, a direction can be supplied that inverts the sense of the output to make code more readable if
the encoder is mounted such that forward movement generates negative values. Quadrature encoders have two
digital outputs, an A Channel and a B Channel, that are out of phase with each other to allow the FPGA to do
direction sensing.

All encoders will immediately start counting - reset() them if you need them to be zeroed before use.

Instance variables:

•aSource: The A phase of the quad encoder

•bSource: The B phase of the quad encoder

•indexSource: The index source (available on some encoders)

38 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Encoder constructor. Construct a Encoder given a and b channels and optionally an index channel.

The encoder will start counting immediately.

The a, b, and optional index channel arguments may be either channel numbers or DigitalSource sources. There
may also be a boolean reverseDirection, and an encodingType according to the following list.

•aSource, bSource

•aSource, bSource, reverseDirection

•aSource, bSource, reverseDirection, encodingType

•aSource, bSource, indexSource, reverseDirection

•aSource, bSource, indexSource

•aChannel, bChannel

•aChannel, bChannel, reverseDirection

•aChannel, bChannel, reverseDirection, encodingType

•aChannel, bChannel, indexChannel, reverseDirection

•aChannel, bChannel, indexChannel

For positional arguments, if the passed object has a getPortHandleForRouting function, it is assumed to be a
DigitalSource.

Alternatively, sources and/or channels may be passed as keyword arguments. The behavior of specifying both a
source and a number for the same channel is undefined, as is passing both a positional and a keyword argument
for the same channel.

In addition, keyword parameters may be provided for reverseDirection and inputType.

Parameters

• aSource – The source that should be used for the a channel.

• bSource – The source that should be used for the b channel.

• indexSource – The source that should be used for the index channel.

• aChannel – The digital input index that should be used for the a channel.

• bChannel – The digital input index that should be used for the b channel.

• indexChannel – The digital input index that should be used for the index channel.

• reverseDirection – Represents the orientation of the encoder and inverts the output
values if necessary so forward represents positive values. Defaults to False if unspecified.

• encodingType (Encoder.EncodingType) – Either k1X, k2X, or k4X to indicate
1X, 2X or 4X decoding. If 4X is selected, then an encoder FPGA object is used and the
returned counts will be 4x the encoder spec’d value since all rising and falling edges are
counted. If 1X or 2X are selected then a counter object will be used and the returned value
will either exactly match the spec’d count or be double (2x) the spec’d count. Defaults to
k4X if unspecified.

class EncodingType
Bases: object

The number of edges for the counterbase to increment or decrement on

k1X = 0

k2X = 1

1.1. wpilib Package 39

RobotPy WPILib Documentation, Release master

k4X = 2

class Encoder.IndexingType
Bases: object

kResetOnFallingEdge = 2

kResetOnRisingEdge = 3

kResetWhileHigh = 0

kResetWhileLow = 1

class Encoder.PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController

kDisplacement = 0

kRate = 1

Encoder.encoder

Encoder.free()

Encoder.get()
Gets the current count. Returns the current count on the Encoder. This method compensates for the
decoding type.

Returns Current count from the Encoder adjusted for the 1x, 2x, or 4x scale factor.

Encoder.getDirection()
The last direction the encoder value changed.

Returns The last direction the encoder value changed.

Encoder.getDistance()
Get the distance the robot has driven since the last reset.

Returns The distance driven since the last reset as scaled by the value from
setDistancePerPulse().

Encoder.getEncodingScale()

Returns The encoding scale factor 1x, 2x, or 4x, per the requested encodingType. Used to divide
raw edge counts down to spec’d counts.

Encoder.getFPGAIndex()

Returns The Encoder’s FPGA index

Encoder.getPIDSourceType()

Encoder.getPeriod()
Returns the period of the most recent pulse. Returns the period of the most recent Encoder pulse in seconds.
This method compensates for the decoding type.

Deprecated since version Use: getRate() in favor of this method. This returns unscaled periods and
getRate() scales using value from getDistancePerPulse().

Returns Period in seconds of the most recent pulse.

Encoder.getRate()
Get the current rate of the encoder. Units are distance per second as scaled by the value from
setDistancePerPulse().

40 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

returns The current rate of the encoder.

Encoder.getRaw()
Gets the raw value from the encoder. The raw value is the actual count unscaled by the 1x, 2x, or 4x scale
factor.

Returns Current raw count from the encoder

Encoder.getSamplesToAverage()
Get the Samples to Average which specifies the number of samples of the timer to average when calculating
the period. Perform averaging to account for mechanical imperfections or as oversampling to increase
resolution.

Returns The number of samples being averaged (from 1 to 127)

Encoder.getStopped()
Determine if the encoder is stopped. Using the MaxPeriod value, a boolean is returned that is True if the
encoder is considered stopped and False if it is still moving. A stopped encoder is one where the most
recent pulse width exceeds the MaxPeriod.

Returns True if the encoder is considered stopped.

Encoder.pidGet()
Implement the PIDSource interface.

Returns The current value of the selected source parameter.

Encoder.reset()
Reset the Encoder distance to zero. Resets the current count to zero on the encoder.

Encoder.setDistancePerPulse(distancePerPulse)
Set the distance per pulse for this encoder. This sets the multiplier used to determine the distance driven
based on the count value from the encoder. Do not include the decoding type in this scale. The library
already compensates for the decoding type. Set this value based on the encoder’s rated Pulses per Revo-
lution and factor in gearing reductions following the encoder shaft. This distance can be in any units you
like, linear or angular.

Parameters distancePerPulse – The scale factor that will be used to convert pulses to
useful units.

Encoder.setIndexSource(source, indexing_type=3)
Set the index source for the encoder. When this source rises, the encoder count automatically resets.

Parameters

• source – Either an initialized DigitalSource or a DIO channel number

• indexing_type – The state that will cause the encoder to reset

Type Either a DigitalInput or number

Type A value from wpilib.IndexingType

Encoder.setMaxPeriod(maxPeriod)
Sets the maximum period for stopped detection. Sets the value that represents the maximum period of the
Encoder before it will assume that the attached device is stopped. This timeout allows users to determine
if the wheels or other shaft has stopped rotating. This method compensates for the decoding type.

Parameters maxPeriod – The maximum time between rising and falling edges before the
FPGA will report the device stopped. This is expressed in seconds.

Encoder.setMinRate(minRate)
Set the minimum rate of the device before the hardware reports it stopped.

1.1. wpilib Package 41

RobotPy WPILib Documentation, Release master

Parameters minRate – The minimum rate. The units are in distance per second as scaled by
the value from setDistancePerPulse().

Encoder.setPIDSourceType(pidSource)
Set which parameter of the encoder you are using as a process control variable. The encoder class supports
the rate and distance parameters.

Parameters pidSource – An enum to select the parameter.

Encoder.setReverseDirection(reverseDirection)
Set the direction sensing for this encoder. This sets the direction sensing on the encoder so that it could
count in the correct software direction regardless of the mounting.

Parameters reverseDirection – True if the encoder direction should be reversed

Encoder.setSamplesToAverage(samplesToAverage)
Set the Samples to Average which specifies the number of samples of the timer to average when calculating
the period. Perform averaging to account for mechanical imperfections or as oversampling to increase
resolution.

TODO: Should this raise an exception, so that the user has to deal with giving an incorrect value?

Parameters samplesToAverage – The number of samples to average from 1 to 127.

Filter

class wpilib.Filter(source)
Bases: object

Superclass for filters

Constructor.

Parameters source (PIDSource, callable) –

get()
Returns the current filter estimate without also inserting new data as pidGet() would do.

Returns The current filter estimate

getPIDSourceType()

pidGet()

pidGetSource()
Calls PIDGet() of source

Returns Current value of source

reset()
Reset the filter state

setPIDSourceType(pidSourceType)

GearTooth

class wpilib.GearTooth(channel, directionSensitive=False)
Bases: wpilib.Counter

Interface to the gear tooth sensor supplied by FIRST

42 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Currently there is no reverse sensing on the gear tooth sensor, but in future versions we might implement the
necessary timing in the FPGA to sense direction.

Construct a GearTooth sensor.

Parameters

• channel (int) – The DIO channel index or DigitalSource that the sensor is connected to.

• directionSensitive (bool) – True to enable the pulse length decoding in hardware
to specify count direction. Defaults to False.

enableDirectionSensing(directionSensitive)

free()

kGearToothThreshold = 5.5e-05

GyroBase

class wpilib.GyroBase
Bases: wpilib.SensorBase

GyroBase is the common base class for Gyro implementations such as AnalogGyro.

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController

kDisplacement = 0

kRate = 1

GyroBase.calibrate()

GyroBase.getAngle()

GyroBase.getPIDSourceType()

GyroBase.getRate()

GyroBase.pidGet()
Get the output of the gyro for use with PIDControllers. May be the angle or rate depending on the set
PIDSourceType

Returns the current angle according to the gyro

Return type float

GyroBase.reset()

GyroBase.setPIDSourceType(pidSource)
Set which parameter of the gyro you are using as a process control variable. The Gyro class supports the
rate and angle parameters.

Parameters pidSource (PIDSource.PIDSourceType) – An enum to select the param-
eter.

I2C

class wpilib.I2C(port, deviceAddress, simPort=None)
Bases: object

1.1. wpilib Package 43

RobotPy WPILib Documentation, Release master

I2C bus interface class.

This class is intended to be used by sensor (and other I2C device) drivers. It probably should not be used directly.

Example usage:

i2c = wpilib.I2C(wpilib.I2C.Port.kOnboard, 4)

Write bytes 'text', and receive 4 bytes in data
data = i2c.transaction(b'text', 4)

Constructor.

Parameters

• port (I2C.Port) – The I2C port the device is connected to.

• deviceAddress – The address of the device on the I2C bus.

• simPort – This must be an object that implements all of the i2c* functions from hal_impl
that you use. See test_i2c.py for an example.

class Port
Bases: object

kMXP = 1

kOnboard = 0

I2C.addressOnly()
Attempt to address a device on the I2C bus.

This allows you to figure out if there is a device on the I2C bus that responds to the address specified in
the constructor.

Returns Transfer Aborted... False for success, True for aborted.

I2C.free()

I2C.port

I2C.read(registerAddress, count)
Execute a read transaction with the device.

Read bytes from a device. Most I2C devices will auto-increment the register pointer internally allowing
you to read consecutive registers on a device in a single transaction.

Parameters

• registerAddress – The register to read first in the transaction.

• count – The number of bytes to read in the transaction.

Returns The data read from the device.

Return type iterable of bytes

I2C.readOnly(count)
Execute a read only transaction with the device.

Read bytes from a device. This method does not write any data to prompt the device.

Parameters count – The number of bytes to read in the transaction.

Returns The data read from the device.

Return type iterable of bytes

44 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

I2C.transaction(dataToSend, receiveSize)
Generic transaction.

This is a lower-level interface to the I2C hardware giving you more control over each transaction.

Parameters

• dataToSend (iterable of bytes) – Buffer of data to send as part of the transac-
tion.

• receiveSize (int) – Number of bytes to read from the device.

Returns Data received from the device.

Return type iterable of bytes

I2C.verifySensor(registerAddress, expected)
Verify that a device’s registers contain expected values.

Most devices will have a set of registers that contain a known value that can be used to identify them. This
allows an I2C device driver to easily verify that the device contains the expected value.

The device must support and be configured to use register auto-increment.

Parameters

• registerAddress – The base register to start reading from the device.

• expected – The values expected from the device.

Returns True if the sensor was verified to be connected

I2C.write(registerAddress, data)
Execute a write transaction with the device.

Write a single byte to a register on a device and wait until the transaction is complete.

Parameters

• registerAddress – The address of the register on the device to be written.

• data – The byte to write to the register on the device.

Returns Transfer Aborted... False for success, True for aborted.

I2C.writeBulk(data)
Execute a write transaction with the device.

Write multiple bytes to a register on a device and wait until the transaction is complete.

Parameters data (iterable of bytes) – The data to write to the device.

Returns Transfer Aborted... False for success, True for aborted.

Usage:

send byte string
failed = i2c.writeBulk(b'stuff')

send list of integers
failed = i2c.write([0x01, 0x02])

1.1. wpilib Package 45

RobotPy WPILib Documentation, Release master

GamepadBase

class wpilib.interfaces.GamepadBase(port)
Bases: wpilib.interfaces.GenericHID

GamepadBase Interface.

getBumper(hand)
Is the bumper pressed.

Parameters hand – which hand

Returns true if the bumper is pressed

getName()

getPOV(pov=0)

getPOVCount()

getRawAxis(axis)

getRawButton(button)

getStickButton(hand=None)

getType()

setOutput(outputNumber, value)

setOutputs(value)

setRumble(type, value)

GenericHID

class wpilib.interfaces.GenericHID(port)
Bases: object

GenericHID Interface.

class HIDType(value)
Bases: object

kHID1stPerson = 24

kHIDDriving = 22

kHIDFlight = 23

kHIDGamepad = 21

kHIDJoystick = 20

kUnknown = -1

kXInputArcadePad = 19

kXInputArcadeStick = 3

kXInputDancePad = 5

kXInputDrumKit = 8

kXInputFlightStick = 4

kXInputGamepad = 1

46 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

kXInputGuitar = 6

kXInputGuitar2 = 7

kXInputGuitar3 = 11

kXInputUnknown = 0

kXInputWheel = 2

class GenericHID.Hand
Bases: object

Which hand the Human Interface Device is associated with.

kLeft = 0
Left Hand

kRight = 1
Right Hand

class GenericHID.RumbleType
Bases: object

Represents a rumble output on the JoyStick.

kLeftRumble = 0
Left Hand

kRightRumble = 1
Right Hand

GenericHID.getName()
Get the name of the HID.

Returns the name of the HID.

GenericHID.getPOV(pov=0)
Get the angle in degrees of a POV on the HID.

The POV angles start at 0 in the up direction, and increase clockwise (eg right is 90, upper-left is 315).

Parameters pov – The index of the POV to read (starting at 0)

Returns the angle of the POV in degrees, or -1 if the POV is not pressed.

GenericHID.getPOVCount()
For the current HID, return the number of POVs.

GenericHID.getPort()
Get the port number of the HID.

Returns The port number of the HID.

GenericHID.getRawAxis(which)
Get the raw axis.

Parameters which – index of the axis

Returns the raw value of the selected axis

GenericHID.getRawButton(button)
Is the given button pressed.

Parameters button – which button number

Returns the angle of the POV in degrees, or -1 if the POV is not pressed.

1.1. wpilib Package 47

RobotPy WPILib Documentation, Release master

GenericHID.getType()
Get the type of the HID.

Returns the type of the HID.

GenericHID.getX(hand=None)
Get the x position of HID.

Parameters hand – which hand, left or right

Returns the x position

GenericHID.getY(hand=None)
Get the y position of the HID.

Parameters hand – which hand, left or right

Returns the y position

GenericHID.setOutput(outputNumber, value)
Set a single HID output value for the HID.

Parameters

• outputNumber – The index of the output to set (1-32)

• value – The value to set the output to

GenericHID.setOutputs(value)
Set all HID output values for the HID.

Parameters value – The 32 bit output value (1 bit for each output)

GenericHID.setRumble(type, value)
Set the rumble output for the HID. The DS currently supports 2 rumble values, left rumble and right
rumble.

Parameters

• type – Which rumble value to set

• value – The normalized value (0 to 1) to set the rumble to

InterruptableSensorBase

class wpilib.InterruptableSensorBase
Bases: wpilib.SensorBase

Base for sensors to be used with interrupts

Create a new InterrupatableSensorBase

allocateInterrupts(watcher)
Allocate the interrupt

Parameters watcher – True if the interrupt should be in synchronous mode where the user
program will have to explicitly wait for the interrupt to occur.

cancelInterrupts()
Cancel interrupts on this device. This deallocates all the chipobject structures and disables any interrupts.

disableInterrupts()
Disable Interrupts without without deallocating structures.

48 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

enableInterrupts()
Enable interrupts to occur on this input. Interrupts are disabled when the RequestInterrupt call is made.
This gives time to do the setup of the other options before starting to field interrupts.

getAnalogTriggerTypeForRouting()

getPortHandleForRouting()

interrupt

readFallingTimestamp()
Return the timestamp for the falling interrupt that occurred most recently. This is in the same time domain
as getClock(). The falling-edge interrupt should be enabled with setUpSourceEdge.

Returns Timestamp in seconds since boot.

readRisingTimestamp()
Return the timestamp for the rising interrupt that occurred most recently. This is in the same time domain
as getClock(). The rising-edge interrupt should be enabled with setUpSourceEdge.

Returns Timestamp in seconds since boot.

requestInterrupts(handler=None)
Request one of the 8 interrupts asynchronously on this digital input.

Parameters handler – (optional) The function that will be called whenever there is an inter-
rupt on this device. Request interrupts in synchronous mode where the user program interrupt
handler will be called when an interrupt occurs. The default is interrupt on rising edges only.
If not specified, the user program will have to explicitly wait for the interrupt to occur using
waitForInterrupt.

setUpSourceEdge(risingEdge, fallingEdge)
Set which edge to trigger interrupts on

Parameters

• risingEdge – True to interrupt on rising edge

• fallingEdge – True to interrupt on falling edge

waitForInterrupt(timeout, ignorePrevious=True)
In synchronous mode, wait for the defined interrupt to occur. You should NOT attempt to read the sensor
from another thread while waiting for an interrupt. This is not threadsafe, and can cause memory corruption

Parameters

• timeout – Timeout in seconds

• ignorePrevious – If True (default), ignore interrupts that happened before waitForIn-
terrupt was called.

IterativeRobot

class wpilib.IterativeRobot
Bases: wpilib.RobotBase

IterativeRobot implements a specific type of Robot Program framework, extending the RobotBase class.

The IterativeRobot class is intended to be subclassed by a user creating a robot program.

This class is intended to implement the “old style” default code, by providing the following functions which are
called by the main loop, startCompetition(), at the appropriate times:

•robotInit() – provide for initialization at robot power-on

1.1. wpilib Package 49

RobotPy WPILib Documentation, Release master

init() functions – each of the following functions is called once when the appropriate mode is entered:

•disabledInit() – called only when first disabled

•autonomousInit() – called each and every time autonomous is entered from another mode

•teleopInit() – called each and every time teleop is entered from another mode

•testInit() – called each and every time test mode is entered from another mode

Periodic() functions – each of these functions is called iteratively at the appropriate periodic rate (aka the “slow
loop”). The period of the iterative robot is synced to the driver station control packets, giving a periodic fre-
quency of about 50Hz (50 times per second).

•disabledPeriodic()

•autonomousPeriodic()

•teleopPeriodic()

•testPeriodic()

Constructor for RobotIterativeBase.

The constructor initializes the instance variables for the robot to indicate the status of initialization for disabled,
autonomous, and teleop code.

Warning: If you override __init__ in your robot class, you must call the base class constructor. This
must be used to ensure that the communications code starts.

autonomousInit()
Initialization code for autonomous mode should go here.

Users should override this method for initialization code which will be called each time the robot enters
autonomous mode.

autonomousPeriodic()
Periodic code for autonomous mode should go here.

Users should override this method for code which will be called each time a new packet is received from
the driver station and the robot is in autonomous mode.

Packets are received approximately every 20ms. Fixed loop timing is not guaranteed due to network
timing variability and the function may not be called at all if the Driver Station is disconnected. For most
use cases the variable timing will not be an issue. If your code does require guaranteed fixed periodic
timing, consider using Notifier or PIDController instead.

disabledInit()
Initialization code for disabled mode should go here.

Users should override this method for initialization code which will be called each time the robot enters
disabled mode.

disabledPeriodic()
Periodic code for disabled mode should go here.

Users should override this method for code which will be called each time a new packet is received from
the driver station and the robot is in disabled mode.

Packets are received approximately every 20ms. Fixed loop timing is not guaranteed due to network
timing variability and the function may not be called at all if the Driver Station is disconnected. For most
use cases the variable timing will not be an issue. If your code does require guaranteed fixed periodic
timing, consider using Notifier or PIDController instead.

50 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

logger = <logging.Logger object>
A python logging object that you can use to send messages to the log. It is recommended to use this instead
of print statements.

robotInit()
Robot-wide initialization code should go here.

Users should override this method for default Robot-wide initialization which will be called when the robot
is first powered on. It will be called exactly 1 time.

Note: It is simpler to override this function instead of defining a constructor for your robot class

robotPeriodic()
Periodic code for all robot modes should go here.

This function is called each time a new packet is received from the driver station.

Packets are received approximately every 20ms. Fixed loop timing is not guaranteed due to network
timing variability and the function may not be called at all if the Driver Station is disconnected. For most
use cases the variable timing will not be an issue. If your code does require guaranteed fixed periodic
timing, consider using Notifier or PIDController instead.

startCompetition()
Provide an alternate “main loop” via startCompetition().

teleopInit()
Initialization code for teleop mode should go here.

Users should override this method for initialization code which will be called each time the robot enters
teleop mode.

teleopPeriodic()
Periodic code for teleop mode should go here.

Users should override this method for code which will be called each time a new packet is received from
the driver station and the robot is in teleop mode.

Packets are received approximately every 20ms. Fixed loop timing is not guaranteed due to network
timing variability and the function may not be called at all if the Driver Station is disconnected. For most
use cases the variable timing will not be an issue. If your code does require guaranteed fixed periodic
timing, consider using Notifier or PIDController instead.

testInit()
Initialization code for test mode should go here.

Users should override this method for initialization code which will be called each time the robot enters
test mode.

testPeriodic()
Periodic code for test mode should go here.

Users should override this method for code which will be called each time a new packet is received from
the driver station and the robot is in test mode.

Packets are received approximately every 20ms. Fixed loop timing is not guaranteed due to network
timing variability and the function may not be called at all if the Driver Station is disconnected. For most
use cases the variable timing will not be an issue. If your code does require guaranteed fixed periodic
timing, consider using Notifier or PIDController instead.

1.1. wpilib Package 51

RobotPy WPILib Documentation, Release master

Jaguar

class wpilib.Jaguar(channel)
Bases: wpilib.PWMSpeedController

Texas Instruments / Vex Robotics Jaguar Speed Controller as a PWM device.

Constructor.

Parameters channel – The PWM channel that the Jaguar is attached to. 0-9 are on-board, 10-19
are on the MXP port

Joystick

class wpilib.Joystick(port, numAxisTypes=None, numButtonTypes=None)
Bases: wpilib.interfaces.JoystickBase

Handle input from standard Joysticks connected to the Driver Station.

This class handles standard input that comes from the Driver Station. Each time a value is requested the most
recent value is returned. There is a single class instance for each joystick and the mapping of ports to hardware
buttons depends on the code in the Driver Station.

Construct an instance of a joystick.

The joystick index is the USB port on the Driver Station.

This constructor is intended for use by subclasses to configure the number of constants for axes and buttons.

Parameters

• port (int) – The port on the Driver Station that the joystick is plugged into.

• numAxisTypes (int) – The number of axis types.

• numButtonTypes (int) – The number of button types.

class AxisType
Bases: object

Represents an analog axis on a joystick.

kNumAxis = 5

kThrottle = 4

kTwist = 3

kX = 0

kY = 1

kZ = 2

class Joystick.ButtonType
Bases: object

Represents a digital button on the Joystick

kNumButton = 2

kTop = 1

kTrigger = 0

52 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Joystick.flush_outputs()
Flush all joystick HID & rumble output values to the HAL

Joystick.getAxis(axis)
For the current joystick, return the axis determined by the argument.

This is for cases where the joystick axis is returned programmatically, otherwise one of the previous
functions would be preferable (for example getX()).

Parameters axis (Joystick.AxisType) – The axis to read.

Returns The value of the axis.

Return type float

Joystick.getAxisChannel(axis)
Get the channel currently associated with the specified axis.

Parameters axis (int) – The axis to look up the channel for.

Returns The channel for the axis.

Return type int

Joystick.getAxisCount()
For the current joystick, return the number of axis

Joystick.getAxisType(axis)
Get the axis type of a joystick axis.

Returns the axis type of a joystick axis.

Joystick.getBumper(hand=None)
This is not supported for the Joystick.

This method is only here to complete the GenericHID interface.

Parameters hand – This parameter is ignored for the Joystick class and is only here to complete
the GenericHID interface.

Returns The state of the bumper (always False)

Return type bool

Joystick.getButton(button)
Get buttons based on an enumerated type.

The button type will be looked up in the list of buttons and then read.

Parameters button (Joystick.ButtonType) – The type of button to read.

Returns The state of the button.

Return type bool

Joystick.getButtonCount()
For the current joystick, return the number of buttons

:rtype int

Joystick.getDirectionDegrees()
Get the direction of the vector formed by the joystick and its origin in degrees.

Returns The direction of the vector in degrees

Return type float

1.1. wpilib Package 53

RobotPy WPILib Documentation, Release master

Joystick.getDirectionRadians()
Get the direction of the vector formed by the joystick and its origin in radians.

Returns The direction of the vector in radians

Return type float

Joystick.getIsXbox()
Get the value of isXbox for the current joystick.

Returns A boolean that is true if the controller is an xbox controller.

Joystick.getMagnitude()
Get the magnitude of the direction vector formed by the joystick’s current position relative to its origin.

Returns The magnitude of the direction vector

Return type float

Joystick.getName()
Get the name of the HID.

Returns The name of the HID.

Joystick.getPOV(pov=0)

Joystick.getPOVCount()

Joystick.getRawAxis(axis)
Get the value of the axis.

Parameters axis (int) – The axis to read, starting at 0.

Returns The value of the axis.

Return type float

Joystick.getRawButton(button)
Get the button value (starting at button 1).

The buttons are returned in a single 16 bit value with one bit representing the state of each button. The
appropriate button is returned as a boolean value.

Parameters button (int) – The button number to be read (starting at 1).

Returns The state of the button.

Return type bool

Joystick.getThrottle()
Get the throttle value of the current joystick.

This depends on the mapping of the joystick connected to the current port.

Returns The Throttle value of the joystick.

Return type float

Joystick.getTop(hand=None)
Read the state of the top button on the joystick.

Look up which button has been assigned to the top and read its state.

Parameters hand – This parameter is ignored for the Joystick class and is only here to complete
the GenericHID interface.

Returns The state of the top button.

54 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Return type bool

Joystick.getTrigger(hand=None)
Read the state of the trigger on the joystick.

Look up which button has been assigned to the trigger and read its state.

Parameters hand – This parameter is ignored for the Joystick class and is only here to complete
the GenericHID interface.

Returns The state of the trigger.

Return type bool

Joystick.getTwist()
Get the twist value of the current joystick.

This depends on the mapping of the joystick connected to the current port.

Returns The Twist value of the joystick.

Return type float

Joystick.getType()
Get the type of the HID.

Returns the type of the HID.

Joystick.getX(hand=None)
Get the X value of the joystick.

This depends on the mapping of the joystick connected to the current port.

Parameters hand – Unused

Returns The X value of the joystick.

Return type float

Joystick.getY(hand=None)
Get the Y value of the joystick.

This depends on the mapping of the joystick connected to the current port.

Parameters hand – Unused

Returns The Y value of the joystick.

Return type float

Joystick.getZ(hand=None)

Joystick.kDefaultThrottleAxis = 3

Joystick.kDefaultTopButton = 2

Joystick.kDefaultTriggerButton = 1

Joystick.kDefaultTwistAxis = 2

Joystick.kDefaultXAxis = 0

Joystick.kDefaultYAxis = 1

Joystick.kDefaultZAxis = 2

Joystick.setAxisChannel(axis, channel)
Set the channel associated with a specified axis.

1.1. wpilib Package 55

RobotPy WPILib Documentation, Release master

Parameters

• axis (int) – The axis to set the channel for.

• channel (int) – The channel to set the axis to.

Joystick.setOutput(outputNumber, value)

Joystick.setOutputs(value)

Joystick.setRumble(type, value)
Set the rumble output for the joystick. The DS currently supports 2 rumble values, left rumble and right
rumble

Parameters

• type (Joystick.RumbleType) – Which rumble value to set

• value (float) – The normalized value (0 to 1) to set the rumble to

LinearDigitalFilter

class wpilib.LinearDigitalFilter(source, ffGains, fbGains)
Bases: wpilib.Filter

This class implements a linear, digital filter. All types of FIR and IIR filters are supported. Static factory methods
are provided to create commonly used types of filters.

Filters are of the form:

y[n] = (b0*x[n] + b1*x[n-1] + ... + bP*x[n-P]) - (a0*y[n-1] + a2*y[n-2] + ... +
→˓aQ*y[n-Q])

Where:

•y[n] is the output at time “n”

•x[n] is the input at time “n”

•y[n-1] is the output from the LAST time step (“n-1”)

•x[n-1] is the input from the LAST time step (“n-1”)

•b0...bP are the “feedforward” (FIR) gains

•a0...aQ are the “feedback” (IIR) gains

Note: IMPORTANT! Note the “-” sign in front of the feedback term! This is a common convention in signal
processing.

What can linear filters do? Basically, they can filter, or diminish, the effects of undesirable input frequencies.
High frequencies, or rapid changes, can be indicative of sensor noise or be otherwise undesirable. A “low pass”
filter smoothes out the signal, reducing the impact of these high frequency components. Likewise, a “high pass”
filter gets rid of slow-moving signal components, letting you detect large changes more easily.

Example FRC applications of filters:

•Getting rid of noise from an analog sensor input (note: the roboRIO’s FPGA can do this faster in hardware)

•Smoothing out joystick input to prevent the wheels from slipping or the robot from tipping

•Smoothing motor commands so that unnecessary strain isn’t put on electrical or mechanical components

56 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

•If you use clever gains, you can make a PID controller out of this class!

For more on filters, I highly recommend the following articles:

•http://en.wikipedia.org/wiki/Linear_filter

•http://en.wikipedia.org/wiki/Iir_filter

•http://en.wikipedia.org/wiki/Fir_filter

Note: pidGet() should be called by the user on a known, regular period. You can set up a Notifier to do this
(look at the PIDController class), or do it “inline” with code in a periodic function.

Note: For ALL filters, gains are necessarily a function of frequency. If you make a filter that works well for you
at, say, 100Hz, you will most definitely need to adjust the gains if you then want to run it at 200Hz! Combining
this with Note 1 - the impetus is on YOU as a developer to make sure pidGet() gets called at the desired,
constant frequency!

There are static methods you can use to build common filters:

•highPass()

•movingAverage()

•singlePoleIIR()

Constructor. Create a linear FIR or IIR filter

Parameters

• source (PIDSource, callable) – The PIDSource object that is used to get values

• ffGains (list, tuple) – The “feed forward” or FIR gains

• fbGains (list, tuple) – The “feed back” or IIR gains

get()
Returns the current filter estimate without also inserting new data as pidGet() would do.

Returns The current filter estimate

static highPass(source, timeConstant, period)
Creates a first-order high-pass filter of the form:

y[n] = gain*x[n] + (-gain)*x[n-1] + gain*y[n-1]

where gain = e^(-dt / T), T is the time constant in seconds

This filter is stable for time constants greater than zero

Parameters

• source (PIDSource, callable) – The PIDSource object that is used to get values

• timeConstant (float) – The discrete-time time constant in seconds

• period (float) – The period in seconds between samples taken by the user

Returns LinearDigitalFilter

static movingAverage(source, taps)
Creates a K-tap FIR moving average filter of the form:

1.1. wpilib Package 57

http://en.wikipedia.org/wiki/Linear_filter
http://en.wikipedia.org/wiki/Iir_filter
http://en.wikipedia.org/wiki/Fir_filter

RobotPy WPILib Documentation, Release master

y[n] = 1/k * (x[k] + x[k-1] + ... + x[0])

This filter is always stable.

Parameters

• source (PIDSource, callable) – The PIDSource object that is used to get values

• taps – The number of samples to average over. Higher = smoother but slower

Raises ValueError if number of taps is less than 1

Returns LinearDigitalFilter

pidGet()
Calculates the next value of the filter

Returns The filtered value at this step

reset()
Reset the filter state

static singlePoleIIR(source, timeConstant, period)
Creates a one-pole IIR low-pass filter of the form:

y[n] = (1-gain)*x[n] + gain*y[n-1]

Where gain = e^(-dt / T), T is the time constant in seconds

This filter is stable for time constants greater than zero

Parameters

• source (PIDSource, callable) – The PIDSource object that is used to get values

• timeConstant (float) – The discrete-time time constant in seconds

• period (float) – The period in seconds between samples taken by the user

Returns LinearDigitalFilter

LiveWindow

class wpilib.LiveWindow
Bases: object

The public interface for putting sensors and actuators on the LiveWindow.

static addActuator(subsystem, name, component)
Add an Actuator associated with the subsystem and with call it by the given name.

Parameters

• subsystem – The subsystem this component is part of.

• name – The name of this component.

• component – A LiveWindowSendable component that represents a actuator.

static addActuatorChannel(moduleType, channel, component)
Add Actuator to LiveWindow. The components are shown with the module type, slot and channel like
this: Servo[0,2] for a servo object connected to the first digital module and PWM port 2.

Parameters

58 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

• moduleType – A string that defines the module name in the label for the value

• channel – The channel number the device is plugged into (usually PWM)

• component – The reference to the object being added

static addActuatorModuleChannel(moduleType, moduleNumber, channel, component)
Add Actuator to LiveWindow. The components are shown with the module type, slot and channel like
this: Servo[0,2] for a servo object connected to the first digital module and PWM port 2.

Parameters

• moduleType – A string that defines the module name in the label for the value

• moduleNumber – The number of the particular module type

• channel – The channel number the device is plugged into (usually PWM)

• component – The reference to the object being added

static addSensor(subsystem, name, component)
Add a Sensor associated with the subsystem and with call it by the given name.

Parameters

• subsystem – The subsystem this component is part of.

• name – The name of this component.

• component – A LiveWindowSendable component that represents a sensor.

static addSensorChannel(moduleType, channel, component)
Add Sensor to LiveWindow. The components are shown with the type and channel like this: Gyro[0] for a
gyro object connected to the first analog channel.

Parameters

• moduleType – A string indicating the type of the module used in the naming (above)

• channel – The channel number the device is connected to

• component – A reference to the object being added

components = {}

firstTime = True

static initializeLiveWindowComponents()
Initialize all the LiveWindow elements the first time we enter LiveWindow mode. By holding off creating
the NetworkTable entries, it allows them to be redefined before the first time in LiveWindow mode. This
allows default sensor and actuator values to be created that are replaced with the custom names from users
calling addActuator and addSensor.

liveWindowEnabled = False

livewindowTable = None

static removeComponent(component)
Removes a component from LiveWindow.

Parameters component – The reference to the object being removed.

static run()
The run method is called repeatedly to keep the values refreshed on the screen in test mode.

sensors = set()

1.1. wpilib Package 59

RobotPy WPILib Documentation, Release master

static setEnabled(enabled)
Set the enabled state of LiveWindow. If it’s being enabled, turn off the scheduler and remove all the
commands from the queue and enable all the components registered for LiveWindow. If it’s being disabled,
stop all the registered components and reenable the scheduler.

TODO: add code to disable PID loops when enabling LiveWindow. The commands should reenable the
PID loops themselves when they get rescheduled. This prevents arms from starting to move around, etc.
after a period of adjusting them in LiveWindow mode.

statusTable = None

static updateValues()
Puts all sensor values on the live window.

LiveWindowSendable

class wpilib.LiveWindowSendable
Bases: wpilib.Sendable

A special type of object that can be displayed on the live window.

MotorSafety

class wpilib.MotorSafety
Bases: object

Provides mechanisms to safely shutdown motors if they aren’t updated often enough.

The MotorSafety object is constructed for every object that wants to implement the Motor Safety protocol. The
helper object has the code to actually do the timing and call the motors stop() method when the timeout expires.
The motor object is expected to call the feed() method whenever the motors value is updated.

The constructor for a MotorSafety object. The helper object is constructed for every object that wants to imple-
ment the Motor Safety protocol. The helper object has the code to actually do the timing and call the motors
stop() method when the timeout expires. The motor object is expected to call the feed() method whenever the
motors value is updated.

DEFAULT_SAFETY_EXPIRATION = 0.1

check()
Check if this motor has exceeded its timeout. This method is called periodically to determine if this motor
has exceeded its timeout value. If it has, the stop method is called, and the motor is shut down until its
value is updated again.

static checkMotors()
Check the motors to see if any have timed out. This static method is called periodically to poll all the
motors and stop any that have timed out.

feed()
Feed the motor safety object. Resets the timer on this object that is used to do the timeouts.

getExpiration()
Retrieve the timeout value for the corresponding motor safety object.

Returns the timeout value in seconds.

Return type float

helpers = <_weakrefset.WeakSet object>

60 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

helpers_lock = <unlocked _thread.lock object>

isAlive()
Determine of the motor is still operating or has timed out.

Returns True if the motor is still operating normally and hasn’t timed out.

Return type float

isSafetyEnabled()
Return the state of the motor safety enabled flag. Return if the motor safety is currently enabled for this
device.

Returns True if motor safety is enforced for this device

Return type bool

setExpiration(expirationTime)
Set the expiration time for the corresponding motor safety object.

Parameters expirationTime (float) – The timeout value in seconds.

setSafetyEnabled(enabled)
Enable/disable motor safety for this device. Turn on and off the motor safety option for this PWM object.

Parameters enabled (bool) – True if motor safety is enforced for this object

PIDController

class wpilib.PIDController(*args, **kwargs)
Bases: wpilib.LiveWindowSendable

Can be used to control devices via a PID Control Loop.

Creates a separate thread which reads the given PIDSource and takes care of the integral calculations, as well
as writing the given PIDOutput.

This feedback controller runs in discrete time, so time deltas are not used in the integral and derivative calcula-
tions. Therefore, the sample rate affects the controller’s behavior for a given set of PID constants.

Allocate a PID object with the given constants for P, I, D, and F

Arguments can be structured as follows:

•Kp, Ki, Kd, Kf, PIDSource, PIDOutput, period

•Kp, Ki, Kd, PIDSource, PIDOutput, period

•Kp, Ki, Kd, PIDSource, PIDOutput

•Kp, Ki, Kd, Kf, PIDSource, PIDOutput

Parameters

• Kp (float or int) – the proportional coefficient

• Ki (float or int) – the integral coefficient

• Kd (float or int) – the derivative coefficient

• Kf (float or int) – the feed forward term

• source (A function, or an object that implements PIDSource) – Called to get values

• output (A function, or an object that implements PIDOutput) – Receives the output
percentage

1.1. wpilib Package 61

RobotPy WPILib Documentation, Release master

• period (float or int) – the loop time for doing calculations. This particularly effects
calculations of the integral and differential terms. The default is 50ms.

AbsoluteTolerance_onTarget(value)

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController

kDisplacement = 0

kRate = 1

PIDController.PercentageTolerance_onTarget(percentage)

PIDController.calculateFeedForward()
Calculate the feed forward term

Both of the provided feed forward calculations are velocity feed forwards. If a different feed forward
calculation is desired, the user can override this function and provide his or her own. This function does no
synchronization because the PIDController class only calls it in synchronized code, so be careful if calling
it oneself.

If a velocity PID controller is being used, the F term should be set to 1 over the maximum setpoint for the
output. If a position PID controller is being used, the F term should be set to 1 over the maximum speed
for the output measured in setpoint units per this controller’s update period (see the default period in this
class’s constructor).

PIDController.disable()
Stop running the PIDController, this sets the output to zero before stopping.

PIDController.enable()
Begin running the PIDController.

PIDController.free()
Free the PID object

PIDController.get()
Return the current PID result. This is always centered on zero and constrained the the max and min outs.

Returns the latest calculated output

PIDController.getAvgError()
Returns the current difference of the error over the past few iterations. You can specify the number of
iterations to average with setToleranceBuffer() (defaults to 1). getAvgError() is used for the
onTarget() function.

Returns the current average of the error

PIDController.getContinuousError(error)
Wraps error around for continuous inputs. The original error is returned if continuous mode is disabled.
This is an unsynchronized function.

Parameters error – The current error of the PID controller.

Returns Error for continuous inputs.

PIDController.getD()
Get the Differential coefficient.

Returns differential coefficient

62 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

PIDController.getDeltaSetpoint()
Returns the change in setpoint over time of the PIDController

Returns the change in setpoint over time

PIDController.getError()
Returns the current difference of the input from the setpoint.

Returns the current error

PIDController.getF()
Get the Feed forward coefficient.

Returns feed forward coefficient

PIDController.getI()
Get the Integral coefficient

Returns integral coefficient

PIDController.getP()
Get the Proportional coefficient.

Returns proportional coefficient

PIDController.getPIDSourceType(pidSourceType)
Returns the type of input the PID controller is using

Returns the PID controller input type

PIDController.getSetpoint()
Returns the current setpoint of the PIDController.

Returns the current setpoint

PIDController.instances = 0

PIDController.isAvgErrorValid()
Returns whether or not any values have been collected. If no values have been collected, getAvgError is 0,
which is invalid.

Returns True if getAvgError() is currently valid.

PIDController.isEnable()
Return True if PIDController is enabled.

PIDController.isEnabled()
Return True if PIDController is enabled.

PIDController.kDefaultPeriod = 0.05

PIDController.onTarget()
Return True if the error is within the percentage of the total input range, determined by setTolerance. This
assumes that the maximum and minimum input were set using setInput().

Returns True if the error is less than the tolerance

PIDController.reset()
Reset the previous error, the integral term, and disable the controller.

PIDController.setAbsoluteTolerance(absvalue)
Set the absolute error which is considered tolerable for use with onTarget().

Parameters absvalue – absolute error which is tolerable in the units of the input object

1.1. wpilib Package 63

RobotPy WPILib Documentation, Release master

PIDController.setContinuous(continuous=True)
Set the PID controller to consider the input to be continuous. Rather then using the max and min in as
constraints, it considers them to be the same point and automatically calculates the shortest route to the
setpoint.

Parameters continuous – Set to True turns on continuous, False turns off continuous

PIDController.setInputRange(minimumInput, maximumInput)
Sets the maximum and minimum values expected from the input.

Parameters

• minimumInput – the minimum percentage expected from the input

• maximumInput – the maximum percentage expected from the output

PIDController.setOutputRange(minimumOutput, maximumOutput)
Sets the minimum and maximum values to write.

Parameters

• minimumOutput – the minimum percentage to write to the output

• maximumOutput – the maximum percentage to write to the output

PIDController.setPID(p, i, d, f=0.0)
Set the PID Controller gain parameters. Set the proportional, integral, and differential coefficients.

Parameters

• p – Proportional coefficient

• i – Integral coefficient

• d – Differential coefficient

• f – Feed forward coefficient (optional, default is 0.0)

PIDController.setPIDSourceType(pidSourceType)
Sets what type of input the PID controller will use

Parameters pidSourceType – the type of input

PIDController.setPercentTolerance(percentage)
Set the percentage error which is considered tolerable for use with onTarget(). (Input of 15.0 = 15
percent)

Parameters percentage – percent error which is tolerable

PIDController.setSetpoint(setpoint)
Set the setpoint for the PIDController Clears the queue for GetAvgError().

Parameters setpoint – the desired setpoint

PIDController.setTolerance(percent)
Set the percentage error which is considered tolerable for use with onTarget(). (Input of 15.0 = 15
percent)

Parameters percent – error which is tolerable

Deprecated since version 2015.1: Use setPercentTolerance() or setAbsoluteTolerance()
instead.

PIDController.setToleranceBuffer(bufLength)
Set the number of previous error samples to average for tolerancing. When determining whether a mecha-
nism is on target, the user may want to use a rolling average of previous measurements instead of a precise

64 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

position or velocity. This is useful for noisy sensors which return a few erroneous measurements when the
mechanism is on target. However, the mechanism will not register as on target for at least the specified
bufLength cycles.

Parameters bufLength (int) – Number of previous cycles to average.

PowerDistributionPanel

class wpilib.PowerDistributionPanel(module=0)
Bases: wpilib.SensorBase

Use to obtain voltage, current, temperature, power, and energy from the Power Distribution Panel over CAN

Parameters module (int) – CAN ID of the PDP

clearStickyFaults()
Clear all pdp sticky faults

getCurrent(channel)
Query the current of a single channel of the PDP

Returns The current of one of the PDP channels (channels 0-15) in Amperes

Return type float

getTemperature()
Query the temperature of the PDP

Returns The temperature of the PDP in degrees Celsius

Return type float

getTotalCurrent()
Query the current of all monitored PDP channels (0-15)

Returns The total current drawn from the PDP channels in Amperes

Return type float

getTotalEnergy()
Query the total energy drawn from the monitored PDP channels

Returns The total energy drawn from the PDP channels in Joules

Return type float

getTotalPower()
Query the total power drawn from the monitored PDP channels

Returns The total power drawn from the PDP channels in Watts

Return type float

getVoltage()
Query the input voltage of the PDP

Returns The voltage of the PDP in volts

Return type float

resetTotalEnergy()
Reset the total energy to 0

1.1. wpilib Package 65

RobotPy WPILib Documentation, Release master

Preferences

class wpilib.Preferences
Bases: object

Provides a relatively simple way to save important values to the roboRIO to access the next time the roboRIO is
booted.

This class loads and saves from a file inside the roboRIO. The user can not access the file directly, but may
modify values at specific fields which will then be saved to the file when save() is called.

This class is thread safe.

This will also interact with networktables.NetworkTable by creating a table called “Preferences” with
all the key-value pairs. To save using NetworkTable, simply set the boolean at position ~S A V E~ to true. Also,
if the value of any variable is ” in the NetworkTable, then that represents non-existence in the Preferences table.

Creates a preference class that will automatically read the file in a different thread. Any call to its methods will
be blocked until the thread is finished reading.

TABLE_NAME = ‘Preferences’

containsKey(key)
Returns whether or not there is a key with the given name.

Parameters key – the key

Returns True if there is a value at the given key

getBoolean(key, backup=None)
Returns the boolean at the given key. If this table does not have a value for that position, then the given
backup value will be returned.

Parameters

• key – the key

• backup – the value to return if none exists in the table

Returns either the value in the table, or the backup

getFloat(key, backup=None)
Returns the float at the given key. If this table does not have a value for that position, then the given backup
value will be returned.

Parameters

• key – the key

• backup – the value to return if none exists in the table

Returns either the value in the table, or the backup

Raises TableKeyNotDefinedException if key cannot be found

static getInstance()
Returns the preferences instance.

Returns the preferences instance

getInt(key, backup=None)
Returns the int at the given key. If this table does not have a value for that position, then the given backup
value will be returned.

Parameters

66 Chapter 1. WPILib API

http://pynetworktables.readthedocs.io/en/stable/api.html#networktables.NetworkTable

RobotPy WPILib Documentation, Release master

• key – the key

• backup – the value to return if none exists in the table

Returns either the value in the table, or the backup

Raises TableKeyNotDefinedException if key cannot be found

getKeys()

Returns a list of the keys

getString(key, backup=None)
Returns the string at the given key. If this table does not have a value for that position, then the given
backup value will be returned.

Parameters

• key – the key

• backup – the value to return if none exists in the table

Returns either the value in the table, or the backup

keys()
Python style get list of keys.

putBoolean(key, value)
Puts the given float into the preferences table.

The key may not have any whitespace nor an equals sign.

This will NOT save the value to memory between power cycles, to do that you must call save() (which
must be used with care) at some point after calling this.

Parameters

• key – the key

• value – the value

putFloat(key, value)
Puts the given float into the preferences table.

The key may not have any whitespace nor an equals sign.

This will NOT save the value to memory between power cycles, to do that you must call save() (which
must be used with care) at some point after calling this.

Parameters

• key – the key

• value – the value

putInt(key, value)
Puts the given int into the preferences table.

The key may not have any whitespace nor an equals sign.

This will NOT save the value to memory between power cycles, to do that you must call save() (which
must be used with care) at some point after calling this.

Parameters

• key – the key

• value – the value

1.1. wpilib Package 67

RobotPy WPILib Documentation, Release master

putString(key, value)
Puts the given string into the preferences table.

The value may not have quotation marks, nor may the key have any whitespace nor an equals sign.

This will NOT save the value to memory between power cycles, to do that you must call save() (which
must be used with care) at some point after calling this.

Parameters

• key – the key

• value – the value

remove(key)
Remove a preference

Parameters key – the key

valueChangedEx(source, key, value, isNew)

PWM

class wpilib.PWM(channel)
Bases: wpilib.LiveWindowSendable

Raw interface to PWM generation in the FPGA.

The values supplied as arguments for PWM outputs range from -1.0 to 1.0. They are mapped to the hardware
dependent values, in this case 0-2000 for the FPGA. Changes are immediately sent to the FPGA, and the update
occurs at the next FPGA cycle. There is no delay.

As of revision 0.1.10 of the FPGA, the FPGA interprets the 0-2000 values as follows:

•2000 = full “forward”

•1999 to 1001 = linear scaling from “full forward” to “center”

•1000 = center value

•999 to 2 = linear scaling from “center” to “full reverse”

•1 = minimum pulse width (currently .5ms)

•0 = disabled (i.e. PWM output is held low)

kDefaultPwmPeriod is the 1x period (5.05 ms). In hardware, the period scaling is implemented as an output
squelch to get longer periods for old devices.

•20ms periods (50 Hz) are the “safest” setting in that this works for all devices

•20ms periods seem to be desirable for Vex Motors

•20ms periods are the specified period for HS-322HD servos, but work reliably down to 10.0 ms; starting
at about 8.5ms, the servo sometimes hums and get hot; by 5.0ms the hum is nearly continuous

•10ms periods work well for Victor 884

•5ms periods allows higher update rates for Luminary Micro Jaguar speed controllers. Due to the shipping
firmware on the Jaguar, we can’t run the update period less than 5.05 ms.

Allocate a PWM given a channel.

Parameters channel (int) – The PWM channel number. 0-9 are on-board, 10-19 are on the
MXP port

68 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

class PeriodMultiplier
Bases: object

Represents the amount to multiply the minimum servo-pulse pwm period by.

k1X = 1
Period Multiplier: don’t skip pulses.

k2X = 2
Period Multiplier: skip every other pulse.

k4X = 4
Period Multiplier: skip three out of four pulses.

PWM.enableDeadbandElimination(eliminateDeadband)
Optionally eliminate the deadband from a speed controller.

Parameters eliminateDeadband (bool) – If True, set the motor curve on the Jaguar to
eliminate the deadband in the middle of the range. Otherwise, keep the full range without
modifying any values.

PWM.free()
Free the PWM channel.

Free the resource associated with the PWM channel and set the value to 0.

PWM.getChannel()
Gets the channel number associated with the PWM Object.

Returns The channel number.

Return type int

PWM.getPosition()
Get the PWM value in terms of a position.

This is intended to be used by servos.

Note: setBounds() must be called first.

Returns The position the servo is set to between 0.0 and 1.0.

Return type float

PWM.getRaw()
Get the PWM value directly from the hardware.

Read a raw value from a PWM channel.

Returns Raw PWM control value. Range: 0 - 255.

Return type int

PWM.getRawBounds()
Gets the bounds on the PWM pulse widths. This Gets the bounds on the PWM values for a particular type
of controller. The values determine the upper and lower speeds as well as the deadband bracket.

Returns tuple of (max, deadbandMax, center, deadbandMin, min)

PWM.getSpeed()
Get the PWM value in terms of speed.

This is intended to be used by speed controllers.

1.1. wpilib Package 69

RobotPy WPILib Documentation, Release master

Note: setBounds() must be called first.

Returns The most recently set speed between -1.0 and 1.0.

Return type float

PWM.handle

PWM.setBounds(max, deadbandMax, center, deadbandMin, min)
Set the bounds on the PWM pulse widths.

This sets the bounds on the PWM values for a particular type of controller. The values determine the upper
and lower speeds as well as the deadband bracket.

Parameters

• max (float) – The max PWM pulse width in ms

• deadbandMax (float) – The high end of the deadband range pulse width in ms

• center (float) – The center (off) pulse width in ms

• deadbandMin (float) – The low end of the deadband pulse width in ms

• min (float) – The minimum pulse width in ms

PWM.setDisabled()
Temporarily disables the PWM output. The next set call will reenable the output.

PWM.setPeriodMultiplier(mult)
Slow down the PWM signal for old devices.

Parameters mult (PWM.PeriodMultiplier) – The period multiplier to apply to this chan-
nel

PWM.setPosition(pos)
Set the PWM value based on a position.

This is intended to be used by servos.

Note: setBounds() must be called first.

Parameters pos (float) – The position to set the servo between 0.0 and 1.0.

PWM.setRaw(value)
Set the PWM value directly to the hardware.

Write a raw value to a PWM channel.

Parameters value (int) – Raw PWM value. Range 0 - 255.

PWM.setRawBounds(max, deadbandMax, center, deadbandMin, min)
Set the bounds on the PWM values. This sets the bounds on the PWM values for a particular each type of
controller. The values determine the upper and lower speeds as well as the deadband bracket.

Parameters

• max (int) – The Minimum pwm value

• deadbandMax (int) – The high end of the deadband range

70 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

• center (int) – The center speed (off)

• deadbandMin (int) – The low end of the deadband range

• min (int) – The minimum pwm value

Deprecated since version 2017.0.0: Recommended to set bounds in ms using setBounds() instead

PWM.setSpeed(speed)
Set the PWM value based on a speed.

This is intended to be used by speed controllers.

Note: setBounds() must be called first.

Parameters speed (float) – The speed to set the speed controller between -1.0 and 1.0.

PWM.setZeroLatch()

PWMSpeedController

class wpilib.PWMSpeedController(channel)
Bases: wpilib.SafePWM

Common base class for all PWM Speed Controllers.

free()

get()
Get the recently set value of the PWM.

Returns The most recently set value for the PWM between -1.0 and 1.0.

Return type float

getInverted()
Common interface for inverting the direction of a speed controller.

Returns The state of inversion (True is inverted)

pidWrite(output)
Write out the PID value as seen in the PIDOutput base object.

Parameters output (float) – Write out the PWM value as was found in the
PIDController.

set(speed)
Set the PWM value.

The PWM value is set using a range of -1.0 to 1.0, appropriately scaling the value for the FPGA.

Parameters speed (float) – The speed to set. Value should be between -1.0 and 1.0.

setInverted(isInverted)
Common interface for inverting the direction of a speed controller.

Parameters isInverted – The state of inversion (True is inverted).

1.1. wpilib Package 71

RobotPy WPILib Documentation, Release master

Relay

class wpilib.Relay(channel, direction=None)
Bases: wpilib.SensorBase, wpilib.LiveWindowSendable, wpilib.MotorSafety

Controls VEX Robotics Spike style relay outputs.

Relays are intended to be connected to Spikes or similar relays. The relay channels controls a pair of channels
that are either both off, one on, the other on, or both on. This translates into two Spike outputs at 0v, one at 12v
and one at 0v, one at 0v and the other at 12v, or two Spike outputs at 12V. This allows off, full forward, or full
reverse control of motors without variable speed. It also allows the two channels (forward and reverse) to be
used independently for something that does not care about voltage polarity (like a solenoid).

Relay constructor given a channel.

Initially the relay is set to both lines at 0v.

Parameters

• channel (int) – The channel number for this relay (0-3)

• direction (Relay.Direction) – The direction that the Relay object will control. If
not specified, defaults to allowing both directions.

class Direction
Bases: object

The Direction(s) that a relay is configured to operate in.

kBoth = 0
Both directions are valid

kForward = 1
Only forward is valid

kReverse = 2
Only reverse is valid

class Relay.Value
Bases: object

The state to drive a Relay to.

kForward = 2
Forward

kOff = 0
Off

kOn = 1
On for relays with defined direction

kReverse = 3
Reverse

Relay.forwardHandle

Relay.free()

Relay.get()
Get the Relay State

Gets the current state of the relay.

72 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

When set to kForwardOnly or kReverseOnly, value is returned as kOn/kOff not kForward/kReverse (per
the recommendation in Set)

Returns The current state of the relay

Return type Relay.Value

Relay.getChannel()
Get the channel number.

Returns The channel number.

Relay.getDescription()

Relay.relayChannels = <wpilib.resource.Resource object>

Relay.reverseHandle

Relay.set(value)
Set the relay state.

Valid values depend on which directions of the relay are controlled by the object.

When set to kBothDirections, the relay can be set to any of the four states: 0v-0v, 12v-0v, 0v-12v, 12v-12v

When set to kForwardOnly or kReverseOnly, you can specify the constant for the direction or you can
simply specify kOff and kOn. Using only kOff and kOn is recommended.

Parameters value (Relay.Value) – The state to set the relay.

Relay.setDirection(direction)
Set the Relay Direction.

Changes which values the relay can be set to depending on which direction is used.

Valid inputs are kBothDirections, kForwardOnly, and kReverseOnly.

Parameters direction (Relay.Direction) – The direction for the relay to operate in

Relay.stopMotor()

Resource

class wpilib.Resource(size)
Bases: object

Tracks resources in the program.

The Resource class is a convenient way of keeping track of allocated arbitrary resources in the program. Re-
sources are just indices that have an lower and upper bound that are tracked by this class. In the library they are
used for tracking allocation of hardware channels but this is purely arbitrary. The resource class does not do any
actual allocation, but simply tracks if a given index is currently in use.

Allocate storage for a new instance of Resource. Allocate a bool array of values that will get initialized to
indicate that no resources have been allocated yet. The indicies of the resources are 0..size-1.

Parameters size – The number of blocks to allocate

allocate(obj, index=None)
Allocate a resource.

When index is None or unspecified, a free resource value within the range is located and returned after it
is marked allocated. Otherwise, it is verified unallocated, then returned.

Parameters

1.1. wpilib Package 73

RobotPy WPILib Documentation, Release master

• obj – The object requesting the resource.

• index – The resource to allocate

Returns The index of the allocated block.

Raises IndexError – If there are no resources available to be allocated or the specified index
is already used.

free(index)
Force-free an allocated resource. After a resource is no longer needed, for example a destructor is called
for a channel assignment class, free will release the resource value so it can be reused somewhere else in
the program.

Parameters index – The index of the resource to free.

RobotBase

class wpilib.RobotBase
Bases: object

Implement a Robot Program framework.

The RobotBase class is intended to be subclassed by a user creating a robot program. Overridden
autonomous() and operatorControl() methods are called at the appropriate time as the match pro-
ceeds. In the current implementation, the Autonomous code will run to completion before the OperatorControl
code could start. In the future the Autonomous code might be spawned as a task, then killed at the end of the
Autonomous period.

User code should be placed in the constructor that runs before the Autonomous or Operator Control period
starts. The constructor will run to completion before Autonomous is entered.

Warning: If you override __init__ in your robot class, you must call the base class constructor. This
must be used to ensure that the communications code starts.

free()
Free the resources for a RobotBase class.

static initializeHardwareConfiguration()
Common initialization for all robot programs.

isAutonomous()
Determine if the robot is currently in Autonomous mode as determined by the field controls.

Returns True if the robot is currently operating Autonomously

Return type bool

isDisabled()
Determine if the Robot is currently disabled.

Returns True if the Robot is currently disabled by the field controls.

Return type bool

isEnabled()
Determine if the Robot is currently enabled.

Returns True if the Robot is currently enabled by the field controls.

Return type bool

74 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

isNewDataAvailable()
Indicates if new data is available from the driver station.

Returns Has new data arrived over the network since the last time this function was called?

Return type bool

isOperatorControl()
Determine if the robot is currently in Operator Control mode as determined by the field controls.

Returns True if the robot is currently operating in Tele-Op mode

Return type bool

static isReal()

Returns If the robot is running in the real world.

Return type bool

static isSimulation()

Returns If the robot is running in simulation.

Return type bool

isTest()
Determine if the robot is currently in Test mode as determined by the driver station.

Returns True if the robot is currently operating in Test mode.

Return type bool

static main(robot_cls)
Starting point for the applications.

startCompetition()
Provide an alternate “main loop” via startCompetition().

RobotDrive

class wpilib.RobotDrive(*args, **kwargs)
Bases: wpilib.MotorSafety

Operations on a robot drivetrain based on a definition of the motor configuration.

The robot drive class handles basic driving for a robot. Currently, 2 and 4 motor tank and mecanum drive trains
are supported. In the future other drive types like swerve might be implemented. Motor channel numbers are
passed supplied on creation of the class. Those are used for either the drive function (intended for hand created
drive code, such as autonomous) or with the Tank/Arcade functions intended to be used for Operator Control
driving.

Constructor for RobotDrive.

Either 2 or 4 motors can be passed to the constructor to implement a two or four wheel drive system, respectively.

When positional arguments are used, these are the two accepted orders:

•leftMotor, rightMotor

•frontLeftMotor, rearLeftMotor, frontRightMotor, rearRightMotor

Alternatively, the above names can be used as keyword arguments.

1.1. wpilib Package 75

RobotPy WPILib Documentation, Release master

Either channel numbers or motor controllers can be passed (determined by whether the passed object has a
set function). If channel numbers are passed, the motorController keyword argument, if present, is the motor
controller class to use; if unspecified, Talon is used.

class MotorType
Bases: object

The location of a motor on the robot for the purpose of driving.

kFrontLeft = 0
Front left

kFrontRight = 1
Front right

kRearLeft = 2
Rear left

kRearRight = 3
Rear right

RobotDrive.arcadeDrive(*args, **kwargs)
Provide tank steering using the stored robot configuration.

Either one or two joysticks (with optional specified axis) or two raw values may be passed positionally,
along with an optional squaredInputs boolean. The valid positional combinations are:

•stick

•stick, squaredInputs

•moveStick, moveAxis, rotateStick, rotateAxis

•moveStick, moveAxis, rotateStick, rotateAxis, squaredInputs

•moveValue, rotateValue

•moveValue, rotateValue, squaredInputs

Alternatively, the above names can be used as keyword arguments. The behavior of mixes of keyword
arguments in other than the combinations above is undefined.

If specified positionally, the value and joystick versions are disambiguated by looking for a getY function
on the stick.

Parameters

• stick – The joystick to use for Arcade single-stick driving. The Y-axis will be selected
for forwards/backwards and the X-axis will be selected for rotation rate.

• moveStick – The Joystick object that represents the forward/backward direction.

• moveAxis – The axis on the moveStick object to use for forwards/backwards (typically
Y_AXIS).

• rotateStick – The Joystick object that represents the rotation value.

• rotateAxis – The axis on the rotation object to use for the rotate right/left (typically
X_AXIS).

• moveValue – The value to use for forwards/backwards.

• rotateValue – The value to use for the rotate right/left.

• squaredInputs – Setting this parameter to True decreases the sensitivity at lower
speeds. Defaults to True if unspecified.

76 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

RobotDrive.drive(outputMagnitude, curve)
Drive the motors at “outputMagnitude” and “curve”.

Both outputMagnitude and curve are -1.0 to +1.0 values, where 0.0 represents stopped and not turning.
curve < 0 will turn left and curve > 0 will turn right.

The algorithm for steering provides a constant turn radius for any normal speed range, both forward and
backward. Increasing m_sensitivity causes sharper turns for fixed values of curve.

This function will most likely be used in an autonomous routine.

Parameters

• outputMagnitude – The speed setting for the outside wheel in a turn, forward or
backwards, +1 to -1.

• curve – The rate of turn, constant for different forward speeds. Set curve < 0 for left
turn or curve > 0 for right turn.

Set curve = e^(-r/w) to get a turn radius r for wheelbase w of your robot. Conversely, turn radius r
= -ln(curve)*w for a given value of curve and wheelbase w.

RobotDrive.free()

RobotDrive.getDescription()

RobotDrive.getNumMotors()

RobotDrive.holonomicDrive(magnitude, direction, rotation)
Holonomic Drive method for Mecanum wheeled robots.

This is an alias to mecanumDrive_Polar() for backward compatibility.

Parameters

• magnitude – The speed that the robot should drive in a given direction. [-1.0..1.0]

• direction – The direction the robot should drive. The direction and magnitude are
independent of the rotation rate.

• rotation – The rate of rotation for the robot that is completely independent of the
magnitude or direction. [-1.0..1.0]

RobotDrive.kArcadeRatioCurve_Reported = False

RobotDrive.kArcadeStandard_Reported = False

RobotDrive.kDefaultExpirationTime = 0.1

RobotDrive.kDefaultMaxOutput = 1.0

RobotDrive.kDefaultSensitivity = 0.5

RobotDrive.kMaxNumberOfMotors = 4

RobotDrive.kMecanumCartesian_Reported = False

RobotDrive.kMecanumPolar_Reported = False

RobotDrive.kTank_Reported = False

static RobotDrive.limit(num)
Limit motor values to the -1.0 to +1.0 range.

RobotDrive.mecanumDrive_Cartesian(x, y, rotation, gyroAngle)
Drive method for Mecanum wheeled robots.

1.1. wpilib Package 77

RobotPy WPILib Documentation, Release master

A method for driving with Mecanum wheeled robots. There are 4 wheels on the robot, arranged so that
the front and back wheels are toed in 45 degrees. When looking at the wheels from the top, the roller axles
should form an X across the robot.

This is designed to be directly driven by joystick axes.

Parameters

• x – The speed that the robot should drive in the X direction. [-1.0..1.0]

• y – The speed that the robot should drive in the Y direction. This input is inverted to match
the forward == -1.0 that joysticks produce. [-1.0..1.0]

• rotation – The rate of rotation for the robot that is completely independent of the
translation. [-1.0..1.0]

• gyroAngle – The current angle reading from the gyro. Use this to implement field-
oriented controls.

RobotDrive.mecanumDrive_Polar(magnitude, direction, rotation)
Drive method for Mecanum wheeled robots.

A method for driving with Mecanum wheeled robots. There are 4 wheels on the robot, arranged so that
the front and back wheels are toed in 45 degrees. When looking at the wheels from the top, the roller axles
should form an X across the robot.

Parameters

• magnitude – The speed that the robot should drive in a given direction.

• direction – The direction the robot should drive in degrees. The direction and magini-
tute are independent of the rotation rate.

• rotation – The rate of rotation for the robot that is completely independent of the
magnitute or direction. [-1.0..1.0]

static RobotDrive.normalize(wheelSpeeds)
Normalize all wheel speeds if the magnitude of any wheel is greater than 1.0.

static RobotDrive.rotateVector(x, y, angle)
Rotate a vector in Cartesian space.

RobotDrive.setInvertedMotor(motor, isInverted)
Invert a motor direction.

This is used when a motor should run in the opposite direction as the drive code would normally run it.
Motors that are direct drive would be inverted, the drive code assumes that the motors are geared with one
reversal.

Parameters

• motor – The motor index to invert.

• isInverted – True if the motor should be inverted when operated.

RobotDrive.setLeftRightMotorOutputs(leftOutput, rightOutput)
Set the speed of the right and left motors.

This is used once an appropriate drive setup function is called such as twoWheelDrive(). The motors are
set to “leftSpeed” and “rightSpeed” and includes flipping the direction of one side for opposing motors.

Parameters

• leftOutput – The speed to send to the left side of the robot.

• rightOutput – The speed to send to the right side of the robot.

78 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

RobotDrive.setMaxOutput(maxOutput)
Configure the scaling factor for using RobotDrive with motor controllers in a mode other than PercentVbus.

Parameters maxOutput – Multiplied with the output percentage computed by the drive func-
tions.

RobotDrive.setSensitivity(sensitivity)
Set the turning sensitivity.

This only impacts the drive() entry-point.

Parameters sensitivity – Effectively sets the turning sensitivity (or turn radius for a given
value)

RobotDrive.stopMotor()

RobotDrive.tankDrive(*args, **kwargs)
Provide tank steering using the stored robot configuration.

Either two joysticks (with optional specified axis) or two raw values may be passed positionally, along
with an optional squaredInputs boolean. The valid positional combinations are:

•leftStick, rightStick

•leftStick, rightStick, squaredInputs

•leftStick, leftAxis, rightStick, rightAxis

•leftStick, leftAxis, rightStick, rightAxis, squaredInputs

•leftValue, rightValue

•leftValue, rightValue, squaredInputs

Alternatively, the above names can be used as keyword arguments. The behavior of mixes of keyword
arguments in other than the combinations above is undefined.

If specified positionally, the value and joystick versions are disambiguated by looking for a getY function.

Parameters

• leftStick – The joystick to control the left side of the robot.

• leftAxis – The axis to select on the left side Joystick object (defaults to the Y axis if
unspecified).

• rightStick – The joystick to control the right side of the robot.

• rightAxis – The axis to select on the right side Joystick object (defaults to the Y axis
if unspecified).

• leftValue – The value to control the left side of the robot.

• rightValue – The value to control the right side of the robot.

• squaredInputs – Setting this parameter to True decreases the sensitivity at lower
speeds. Defaults to True if unspecified.

RobotState

class wpilib.RobotState
Bases: object

Provides an interface to determine the current operating state of the robot code.

impl = None

1.1. wpilib Package 79

RobotPy WPILib Documentation, Release master

static isAutonomous()

static isDisabled()

static isEnabled()

static isOperatorControl()

static isTest()

SafePWM

class wpilib.SafePWM(channel)
Bases: wpilib.PWM , wpilib.MotorSafety

A raw PWM interface that implements the MotorSafety interface

Constructor for a SafePWM object taking a channel number.

Parameters channel (int) – The channel number to be used for the underlying PWM object.
0-9 are on-board, 10-19 are on the MXP port.

disable()

getDescription()

stopMotor()
Stop the motor associated with this PWM object. This is called by the MotorSafety object when it has a
timeout for this PWM and needs to stop it from running.

SampleRobot

class wpilib.SampleRobot
Bases: wpilib.RobotBase

A simple robot base class that knows the standard FRC competition states (disabled, autonomous, or operator
controlled).

You can build a simple robot program off of this by overriding the robotinit(), disabled(),
autonomous() and operatorControl() methods. The startCompetition() method will call
these methods (sometimes repeatedly) depending on the state of the competition.

Alternatively you can override the robotMain() method and manage all aspects of the robot yourself (not
recommended).

Warning: While it may look like a good choice to use for your code if you’re inexperienced, don’t.
Unless you know what you are doing, complex code will be much more difficult under this system. Use
IterativeRobot or command based instead if you’re new.

autonomous()
Autonomous should go here. Users should add autonomous code to this method that should run while the
field is in the autonomous period.

Called once each time the robot enters the autonomous state.

disabled()
Disabled should go here. Users should overload this method to run code that should run while the field is
disabled.

80 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Called once each time the robot enters the disabled state.

logger = <logging.Logger object>
A python logging object that you can use to send messages to the log. It is recommended to use this instead
of print statements.

operatorControl()
Operator control (tele-operated) code should go here. Users should add Operator Control code to this
method that should run while the field is in the Operator Control (tele-operated) period.

Called once each time the robot enters the operator-controlled state.

robotInit()
Robot-wide initialization code should go here.

Users should override this method for default Robot-wide initialization which will be called when the robot
is first powered on. It will be called exactly 1 time.

Note: It is simpler to override this function instead of defining a constructor for your robot class

Warning: the Driver Station “Robot Code” light and FMS “Robot Ready” indicators will be off until
RobotInit() exits. Code in robotInit() that waits for enable will cause the robot to never indicate
that the code is ready, causing the robot to be bypassed in a match.

robotMain()
Robot main program for free-form programs.

This should be overridden by user subclasses if the intent is to not use the autonomous() and operator-
Control() methods. In that case, the program is responsible for sensing when to run the autonomous and
operator control functions in their program.

This method will be called immediately after the constructor is called. If it has not been overridden by a
user subclass (i.e. the default version runs), then the robotInit(), disabled(), autonomous() and operator-
Control() methods will be called.

If you override this function, you must call hal.HALNetworkCommunicationObserveUserProgramStarting()
to indicate that your robot is ready to be enabled, as it will not be called for you.

Warning: Nobody actually wants to override this function. Neither do you.

startCompetition()
Start a competition. This code tracks the order of the field starting to ensure that everything happens in the
right order. Repeatedly run the correct method, either Autonomous or OperatorControl when the robot is
enabled. After running the correct method, wait for some state to change, either the other mode starts or
the robot is disabled. Then go back and wait for the robot to be enabled again.

test()
Test code should go here. Users should add test code to this method that should run while the robot is in
test mode.

1.1. wpilib Package 81

RobotPy WPILib Documentation, Release master

SD540

class wpilib.SD540(channel)
Bases: wpilib.PWMSpeedController

Mindsensors SD540 Speed Controller

Constructor.

Parameters channel – The PWM channel that the SD540 is attached to. 0-9 are on-board, 10-19
are on the MXP port

Note: Note that the SD540 uses the following bounds for PWM values. These values should work reasonably
well for most controllers, but if users experience issues such as asymmetric behavior around the deadband or
inability to saturate the controller in either direction, calibration is recommended. The calibration procedure can
be found in the SD540 User Manual available from Mindsensors.

•2.05ms = full “forward”

•1.55ms = the “high end” of the deadband range

•1.50ms = center of the deadband range (off)

•1.44ms = the “low end” of the deadband range

•.94ms = full “reverse”

Sendable

class wpilib.Sendable
Bases: object

The base interface for objects that can be sent over the network through network tables

SendableChooser

class wpilib.SendableChooser
Bases: wpilib.Sendable

A useful tool for presenting a selection of options to be displayed on the SmartDashboard

For instance, you may wish to be able to select between multiple autonomous modes. You can do this by
putting every possible Command you want to run as an autonomous into a SendableChooser and then put it
into the SmartDashboard to have a list of options appear on the laptop. Once autonomous starts, simply ask the
SendableChooser what the selected value is.

Example:

This shows the user two options on the SmartDashboard
chooser = wpilib.SendableChooser()
chooser.addObject('option1', '1')
chooser.addObject('option2', '2')

wpilib.SmartDashboard.putData('Choice', chooser)

.. later, ask to see what the user selected?
value = chooser.getSelected()

82 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Instantiates a SendableChooser.

DEFAULT = ‘default’

OPTIONS = ‘options’

SELECTED = ‘selected’

addDefault(name, object)
Add the given object to the list of options and marks it as the default. Functionally, this is very close to
addObject(...) except that it will use this as the default option if none other is explicitly selected.

Parameters

• name – the name of the option

• object – the option

addObject(name, object)
Adds the given object to the list of options. On the SmartDashboard on the desktop, the object will appear
as the given name.

Parameters

• name – the name of the option

• object – the option

getSelected()
Returns the object associated with the selected option. If there is none selected, it will return the default.
If there is none selected and no default, then it will return None.

Returns the object associated with the selected option

SensorBase

class wpilib.SensorBase
Bases: wpilib.LiveWindowSendable

Base class for all sensors

Stores most recent status information as well as containing utility functions for checking channels and error
processing.

static checkAnalogInputChannel(channel)
Check that the analog input number is value. Verify that the analog input number is one of the legal channel
numbers. Channel numbers are 0-based.

Parameters channel – The channel number to check.

static checkAnalogOutputChannel(channel)
Check that the analog input number is value. Verify that the analog input number is one of the legal channel
numbers. Channel numbers are 0-based.

Parameters channel – The channel number to check.

static checkDigitalChannel(channel)
Check that the digital channel number is valid. Verify that the channel number is one of the legal channel
numbers. Channel numbers are 0-based.

Parameters channel – The channel number to check.

static checkPDPChannel(channel)
Verify that the power distribution channel number is within limits. Channel numbers are 0-based.

1.1. wpilib Package 83

RobotPy WPILib Documentation, Release master

Parameters channel – The channel number to check.

static checkPDPModule(module)
Verify that the power distribution module number is within limits. Module numbers are 0-based.

Parameters module – The module number to check.

static checkPWMChannel(channel)
Check that the digital channel number is valid. Verify that the channel number is one of the legal channel
numbers. Channel numbers are 0-based.

Parameters channel – The channel number to check.

static checkRelayChannel(channel)
Check that the digital channel number is valid. Verify that the channel number is one of the legal channel
numbers. Channel numbers are 0-based.

Parameters channel – The channel number to check.

static checkSolenoidChannel(channel)
Verify that the solenoid channel number is within limits. Channel numbers are 0-based.

Parameters channel – The channel number to check.

static checkSolenoidModule(moduleNumber)
Verify that the solenoid module is correct.

Parameters moduleNumber – The solenoid module module number to check.

defaultSolenoidModule = 0
Default solenoid module

free()
Free the resources used by this object

static getDefaultSolenoidModule()
Get the number of the default solenoid module.

Returns The number of the default solenoid module.

kAnalogInputChannels = 8
Number of analog input channels per roboRIO

kAnalogOutputChannels = 2
Number of analog output channels per roboRIO

kDigitalChannels = 31
Number of digital channels per roboRIO

kPCMModules = 63
Number of PCM modules

kPDPChannels = 16
Number of power distribution channels per PDP

kPDPModules = 63
Number of power distribution channels per PDP

kPwmChannels = 20
Number of PWM channels per roboRIO

kRelayChannels = 4
Number of relay channels per roboRIO

84 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

kSolenoidChannels = 8
Number of solenoid channels per module

kSystemClockTicksPerMicrosecond = 40
Ticks per microsecond

static setDefaultSolenoidModule(moduleNumber)
Set the default location for the Solenoid module.

Parameters moduleNumber – The number of the solenoid module to use.

Servo

class wpilib.Servo(channel)
Bases: wpilib.PWM

Standard hobby style servo

The range parameters default to the appropriate values for the Hitec HS-322HD servo provided in the FIRST
Kit of Parts in 2008.

Constructor.

•By default kDefaultMaxServoPWM ms is used as the maxPWM value

•By default kDefaultMinServoPWM ms is used as the minPWM value

Parameters channel (int) – The PWM channel to which the servo is attached. 0-9 are on-board,
10-19 are on the MXP port.

free()

get()
Get the servo position.

Servo values range from 0.0 to 1.0 corresponding to the range of full left to full right.

Returns Position from 0.0 to 1.0.

Return type float

getAngle()
Get the servo angle.

Assume that the servo angle is linear with respect to the PWM value (big assumption, need to test).

Returns The angle in degrees to which the servo is set.

Return type float

getServoAngleRange()

kDefaultMaxServoPWM = 2.4

kDefaultMinServoPWM = 0.6

kMaxServoAngle = 180.0

kMinServoAngle = 0.0

set(value)
Set the servo position.

Servo values range from 0.0 to 1.0 corresponding to the range of full left to full right.

1.1. wpilib Package 85

RobotPy WPILib Documentation, Release master

Parameters value (float) – Position from 0.0 to 1.0.

setAngle(degrees)
Set the servo angle.

Assumes that the servo angle is linear with respect to the PWM value (big assumption, need to test).

Servo angles that are out of the supported range of the servo simply “saturate” in that direction In other
words, if the servo has a range of (X degrees to Y degrees) than angles of less than X result in an angle of
X being set and angles of more than Y degrees result in an angle of Y being set.

Parameters degrees (float) – The angle in degrees to set the servo.

SmartDashboard

class wpilib.SmartDashboard
Bases: object

The bridge between robot programs and the SmartDashboard on the laptop

When a value is put into the SmartDashboard, it pops up on the SmartDashboard on the remote host. Users can
put values into and get values from the SmartDashboard.

These values can also be accessed by a NetworkTables client via the ‘SmartDashboard’ table:

from networktables import NetworkTable
sd = NetworkTable.getTable('SmartDashboard')

sd.putXXX and sd.getXXX work as expected here

classmethod clearFlags(key, flags)
Clears flags on the specified key in this table. The key can not be null.

Parameters

• key – the key name

• flags – the flags to clear (bitmask)

classmethod clearPersistent(key)
Stop making a key’s value persistent through program restarts. The key cannot be null.

Parameters key – the key name

classmethod containsKey(key)
Checks the table and tells if it contains the specified key.

Parameters key – key the key to search for

Returns true if the table as a value assigned to the given key

classmethod delete(key)
Deletes the specified key in this table. The key can not be null.

Parameters key – the key name

classmethod getBoolean(key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the boolean the key maps to. If the key does not exist or is of different type, it will return the
default value; if that is not provided, it will throw a KeyError.

Calling this method without passing defaultValue is deprecated.

Parameters

86 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

• key (str) – the key to look up

• defaultValue – returned if the key doesn’t exist

Returns the value associated with the given key or the given default value if there is no value
associated with the key

Raises KeyError if the key doesn’t exist and defaultValue is not provided.

classmethod getBooleanArray(key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the boolean array the key maps to. If the key does not exist or is of different type, it will return the
default value; if that is not provided, it will throw a KeyError.

Calling this method without passing defaultValue is deprecated.

Parameters

• key (str) – the key to look up

• defaultValue – returned if the key doesn’t exist

Returns the value associated with the given key or the given default value if there is no value
associated with the key

Raises KeyError if the key doesn’t exist and defaultValue is not provided.

classmethod getData(key)
Returns the value at the specified key.

Parameters key (str) – the key

Returns the value

Raises KeyError if the key doesn’t exist

classmethod getDouble(key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the number the key maps to. If the key does not exist or is of different type, it will return the
default value; if that is not provided, it will throw a KeyError.

Calling this method without passing defaultValue is deprecated.

Parameters

• key (str) – the key to look up

• defaultValue – returned if the key doesn’t exist

Returns the value associated with the given key or the given default value if there is no value
associated with the key

Raises KeyError if the key doesn’t exist and defaultValue is not provided.

classmethod getFlags(key)
Returns the flags for the specified key.

Parameters key – the key name

Returns the flags, or 0 if the key is not defined

classmethod getInt(key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the number the key maps to. If the key does not exist or is of different type, it will return the
default value; if that is not provided, it will throw a KeyError.

Calling this method without passing defaultValue is deprecated.

Parameters

• key (str) – the key to look up

1.1. wpilib Package 87

RobotPy WPILib Documentation, Release master

• defaultValue – returned if the key doesn’t exist

Returns the value associated with the given key or the given default value if there is no value
associated with the key

Raises KeyError if the key doesn’t exist and defaultValue is not provided.

classmethod getKeys(types=0)
Get array of keys in the table.

Parameters types – bitmask of types; 0 is treated as a “don’t care”.

Returns keys currently in the table

classmethod getNumber(key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the number the key maps to. If the key does not exist or is of different type, it will return the
default value; if that is not provided, it will throw a KeyError.

Calling this method without passing defaultValue is deprecated.

Parameters

• key (str) – the key to look up

• defaultValue – returned if the key doesn’t exist

Returns the value associated with the given key or the given default value if there is no value
associated with the key

Raises KeyError if the key doesn’t exist and defaultValue is not provided.

classmethod getNumberArray(key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the number array the key maps to. If the key does not exist or is of different type, it will return the
default value; if that is not provided, it will throw a KeyError.

Calling this method without passing defaultValue is deprecated.

Parameters

• key (str) – the key to look up

• defaultValue – returned if the key doesn’t exist

Returns the value associated with the given key or the given default value if there is no value
associated with the key

Raises KeyError if the key doesn’t exist and defaultValue is not provided.

classmethod getRaw(key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the raw value (byte array) the key maps to. If the key does not exist or is of different type, it will
return the default value; if that is not provided, it will throw a KeyError.

Calling this method without passing defaultValue is deprecated.

Parameters

• key (str) – the key to look up

• defaultValue – returned if the key doesn’t exist

Returns the value associated with the given key or the given default value if there is no value
associated with the key

Raises KeyError if the key doesn’t exist and defaultValue is not provided.

88 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

classmethod getString(key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the string the key maps to. If the key does not exist or is of different type, it will return the default
value; if that is not provided, it will throw a KeyError.

Calling this method without passing defaultValue is deprecated.

Parameters

• key (str) – the key to look up

• defaultValue – returned if the key doesn’t exist

Returns the value associated with the given key or the given default value if there is no value
associated with the key

Raises KeyError if the key doesn’t exist and defaultValue is not provided.

classmethod getStringArray(key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the string array the key maps to. If the key does not exist or is of different type, it will return the
default value.

Parameters

• key (str) – the key to look up

• defaultValue (list(str)) – the value to be returned if no value is found

Returns the value associated with the given key or the given default value if there is no value
associated with the key

Return type list(str)

Raises KeyError – If the value doesn’t exist and no default is provided, or if it is the wrong
type

classmethod isPersistent(key)
Returns whether the value is persistent through program restarts. The key cannot be null.

Parameters key – the key name

Returns True if the value is persistent.

classmethod putBoolean(key, value)
Put a boolean in the table.

Parameters

• key – the key to be assigned to

• value – the value that will be assigned

:return False if the table key already exists with a different type

classmethod putBooleanArray(key, value)
Put a boolean array in the table.

Parameters

• key – the key to be assigned to

• value – the value that will be assigned

Returns False if the table key already exists with a different type

classmethod putData(*args, **kwargs)
Maps the specified key to the specified value in this table. The value can be retrieved by calling the get
method with a key that is equal to the original key.

1.1. wpilib Package 89

RobotPy WPILib Documentation, Release master

Two argument formats are supported: key, data:

Parameters

• key (str) – the key (cannot be None)

• data – the value

Or the single argument “value”:

Parameters value – the named value (getName is called to retrieve the value)

classmethod putDouble(key, value)
Put a number in the table.

Parameters

• key – the key to be assigned to

• value – the value that will be assigned

Returns False if the table key already exists with a different type

classmethod putInt(key, value)
Put a number in the table.

Parameters

• key – the key to be assigned to

• value – the value that will be assigned

Returns False if the table key already exists with a different type

classmethod putNumber(key, value)
Put a number in the table.

Parameters

• key – the key to be assigned to

• value – the value that will be assigned

Returns False if the table key already exists with a different type

classmethod putNumberArray(key, value)
Put a number array in the table.

Parameters

• key – the key to be assigned to

• value – the value that will be assigned

Returns False if the table key already exists with a different type

classmethod putRaw(key, value)
Put a raw value (byte array) in the table.

Parameters

• key – the key to be assigned to

• value – the value that will be assigned

Returns False if the table key already exists with a different type

classmethod putString(key, value)
Put a string in the table.

90 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Parameters

• key – the key to be assigned to

• value – the value that will be assigned

Returns False if the table key already exists with a different type

classmethod putStringArray(key, value)
Put a string array in the table

Parameters

• key (str) – the key to be assigned to

• value (list(str)) – the value that will be assigned

Returns False if the table key already exists with a different type

Return type bool

classmethod setDefaultBoolean(key, defaultValue)
Gets the current value in the table, setting it if it does not exist.

Parameters

• key – the key

• defaultValue – the default value to set if key doens’t exist.

Returns False if the table key exists with a different type

classmethod setDefaultBooleanArray(key, defaultValue)
Gets the current value in the table, setting it if it does not exist.

Parameters

• key – the key

• defaultValue – the default value to set if key doens’t exist.

Returns False if the table key exists with a different type

classmethod setDefaultNumber(key, defaultValue)
Gets the current value in the table, setting it if it does not exist.

Parameters

• key – the key

• defaultValue – the default value to set if key doens’t exist.

Returns False if the table key exists with a different type

classmethod setDefaultNumberArray(key, defaultValue)
Gets the current value in the table, setting it if it does not exist.

Parameters

• key – the key

• defaultValue – the default value to set if key doens’t exist.

Returns False if the table key exists with a different type

classmethod setDefaultRaw(key, defaultValue)
Gets the current value in the table, setting it if it does not exist.

Parameters

1.1. wpilib Package 91

RobotPy WPILib Documentation, Release master

• key – the key

• defaultValue – the default value to set if key doens’t exist.

Returns False if the table key exists with a different type

classmethod setDefaultString(key, defaultValue)
Gets the current value in the table, setting it if it does not exist.

Parameters

• key – the key

• defaultValue – the default value to set if key doens’t exist.

Returns False if the table key exists with a different type

classmethod setDefaultStringArray(key, defaultValue)
If the key doesn’t currently exist, then the specified value will be assigned to the key.

Parameters

• key (str) – the key to be assigned to

• defaultValue (list(str)) – the default value to set if key doesn’t exist.

Returns False if the table key exists with a different type

Return type bool

classmethod setFlags(key, flags)
Sets flags on the specified key in this table. The key can not be null.

Parameters

• key – the key name

• flags – the flags to set (bitmask)

classmethod setPersistent(key)
Makes a key’s value persistent through program restarts. The key cannot be null.

Parameters key – the key name

table = None

tablesToData = {}

Solenoid

class wpilib.Solenoid(*args, **kwargs)
Bases: wpilib.SolenoidBase

Solenoid class for running high voltage Digital Output.

The Solenoid class is typically used for pneumatic solenoids, but could be used for any device within the current
spec of the PCM.

Constructor.

Arguments can be supplied as positional or keyword. Acceptable positional argument combinations are:

•channel

•moduleNumber, channel

Alternatively, the above names can be used as keyword arguments.

92 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Parameters

• moduleNumber (int) – The CAN ID of the PCM the solenoid is attached to

• channel (int) – The channel on the PCM to control (0..7)

free()
Mark the solenoid as freed.

get()
Read the current value of the solenoid.

Returns True if the solenoid output is on or false if the solenoid output is off.

Return type bool

isBlackListed()

Check if the solenoid is blacklisted. If a solenoid is shorted, it is added to the blacklist and disabled until
power cycle, or until faults are cleared. See clearAllPCMStickyFaults()

Returns If solenoid is disabled due to short.

set(on)
Set the value of a solenoid.

Parameters on (bool) – True will turn the solenoid output on. False will turn the solenoid
output off.

solenoidHandle

SolenoidBase

class wpilib.SolenoidBase(moduleNumber)
Bases: wpilib.SensorBase

SolenoidBase class is the common base class for the Solenoid and DoubleSolenoid classes.

Constructor.

Parameters moduleNumber – The PCM CAN ID

clearAllPCMStickyFaults()
Clear ALL sticky faults inside the PCM that Solenoid is wired to.

If a sticky fault is set, then it will be persistently cleared. Compressor drive maybe momentarily dis-
able while flages are being cleared. Care should be taken to not call this too frequently, otherwise
normal compressor functionality may be prevented.

If no sticky faults are set then this call will have no effect.

getAll()
Read all 8 solenoids from the module used by this solenoid as a single byte.

Returns The current value of all 8 solenoids on this module.

getPCMSolenoidBlackList()

Reads complete solenoid blacklist for all 8 solenoids as a single byte. If a solenoid is shorted, it is
added to the blacklist and disabled until power cycle, or until faults are cleared. See
clearAllPCMStickyFaults()

Returns The solenoid blacklist of all 8 solenoids on the module.

1.1. wpilib Package 93

RobotPy WPILib Documentation, Release master

getPCMSolenoidVoltageFault()

Returns True if PCM is in fault state : The common highside solenoid voltage rail is too low,
most likely a solenoid channel has been shorted.

getPCMSolenoidVoltageStickyFault()

Returns True if PCM Sticky fault is set : The common highside solenoid voltage rail is too low,
most likely a solenoid channel has been shorted.

Spark

class wpilib.Spark(channel)
Bases: wpilib.PWMSpeedController

REV Robotics SPARK Speed Controller

Constructor.

Parameters channel – The PWM channel that the SPARK is attached to. 0-9 are on-board, 10-19
are on the MXP port

Note: Note that the SD540 uses the following bounds for PWM values. These values should work reasonably
well for most controllers, but if users experience issues such as asymmetric behavior around the deadband or
inability to saturate the controller in either direction, calibration is recommended. The calibration procedure can
be found in the SD540 User Manual available from Mindsensors.

•2.003ms = full “forward”

•1.55ms = the “high end” of the deadband range

•1.50ms = center of the deadband range (off)

•1.46ms = the “low end” of the deadband range

•.999ms = full “reverse”

SPI

class wpilib.SPI(port, simPort=None)
Bases: object

Represents a SPI bus port

Example usage:

spi = wpilib.SPI(wpilib.SPI.Port.kOnboardCS0)

Write bytes 'text', and receive something
data = spi.transaction(b'text')

Constructor

Parameters

• port (SPI.Port) – the physical SPI port

• simPort – This must be an object that implements all of the spi* functions from hal_impl
that you use. See test_spi.py for an example.

94 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

class Port
Bases: object

kMXP = 4

kOnboardCS0 = 0

kOnboardCS1 = 1

kOnboardCS2 = 2

kOnboardCS3 = 3

SPI.devices = 0

SPI.free()

SPI.freeAccumulator()
Frees the accumulator.

SPI.getAccumulatorAverage()
Read the average of the accumulated value.

Returns The accumulated average value (value / count).

SPI.getAccumulatorCount()
Read the number of accumulated values.

Read the count of the accumulated values since the accumulator was last Reset().

Returns The number of times samples from the channel were accumulated.

SPI.getAccumulatorLastValue()
Read the last value read by the accumulator engine.

SPI.getAccumulatorOutput()
Read the accumulated value and the number of accumulated values atomically.

This function reads the value and count atomically. This can be used for averaging.

Returns tuple of (value, count)

SPI.getAccumulatorValue()
Read the accumulated value.

Returns The 64-bit value accumulated since the last Reset().

SPI.initAccumulator(period, cmd, xfer_size, valid_mask, valid_value, data_shift, data_size,
is_signed, big_endian)

Initialize the accumulator.

Parameters

• period – Time between reads

• cmd – SPI command to send to request data

• xfer_size – SPI transfer size, in bytes

• valid_mask – Mask to apply to received data for validity checking

• valid_data – After valid_mask is applied, required matching value for validity check-
ing

• data_shift – Bit shift to apply to received data to get actual data value

• data_size – Size (in bits) of data field

• is_signed – Is data field signed?

1.1. wpilib Package 95

RobotPy WPILib Documentation, Release master

• big_endian – Is device big endian?

SPI.port

SPI.read(initiate, size)
Read a word from the receive FIFO.

Waits for the current transfer to complete if the receive FIFO is empty.

If the receive FIFO is empty, there is no active transfer, and initiate is False, errors.

Parameters

• initiate – If True, this function pushes “0” into the transmit buffer and initiates a
transfer. If False, this function assumes that data is already in the receive FIFO from a
previous write.

• size – Number of bytes to read.

Returns received data bytes

SPI.resetAccumulator()
Resets the accumulator to zero.

SPI.setAccumulatorCenter(center)
Set the center value of the accumulator.

The center value is subtracted from each value before it is added to the accumulator. This is used for
the center value of devices like gyros and accelerometers to make integration work and to take the device
offset into account when integrating.

SPI.setAccumulatorDeadband(deadband)
Set the accumulator’s deadband.

SPI.setChipSelectActiveHigh()
Configure the chip select line to be active high.

SPI.setChipSelectActiveLow()
Configure the chip select line to be active low.

SPI.setClockActiveHigh()
Configure the clock output line to be active high. This is sometimes called clock polarity low or clock idle
low.

SPI.setClockActiveLow()
Configure the clock output line to be active low. This is sometimes called clock polarity high or clock idle
high.

SPI.setClockRate(hz)
Configure the rate of the generated clock signal. The default value is 500,000 Hz. The maximum value is
4,000,000 Hz.

Parameters hz – The clock rate in Hertz.

SPI.setLSBFirst()
Configure the order that bits are sent and received on the wire to be least significant bit first.

SPI.setMSBFirst()
Configure the order that bits are sent and received on the wire to be most significant bit first.

SPI.setSampleDataOnFalling()
Configure that the data is stable on the falling edge and the data changes on the rising edge.

SPI.setSampleDataOnRising()
Configure that the data is stable on the rising edge and the data changes on the falling edge.

96 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

SPI.transaction(dataToSend)
Perform a simultaneous read/write transaction with the device

Parameters dataToSend (iterable of bytes) – The data to be written out to the device

Returns data received from the device

Usage:

send byte string
data = spi.transaction(b'stuff')

send list of integers
data = spi.transaction([0x01, 0x02])

SPI.write(dataToSend)
Write data to the slave device. Blocks until there is space in the output FIFO.

If not running in output only mode, also saves the data received on the MISO input during the transfer into
the receive FIFO.

Parameters dataToSend (iterable of bytes) – Data to send

Returns Number of bytes written

Usage:

send byte string
writeCount = spi.write(b'stuff')

send list of integers
writeCount = spi.write([0x01, 0x02])

Talon

class wpilib.Talon(channel)
Bases: wpilib.PWMSpeedController

Cross the Road Electronics (CTRE) Talon and Talon SR Speed Controller via PWM

Constructor for a Talon (original or Talon SR)

Parameters channel (int) – The PWM channel that the Talon is attached to. 0-9 are on-board,
10-19 are on the MXP port

Note: The Talon uses the following bounds for PWM values. These values should work reasonably well for
most controllers, but if users experience issues such as asymmetric behavior around the deadband or inability to
saturate the controller in either direction, calibration is recommended. The calibration procedure can be found
in the Talon User Manual available from CTRE.

•2.037ms = full “forward”

•1.539ms = the “high end” of the deadband range

•1.513ms = center of the deadband range (off)

•1.487ms = the “low end” of the deadband range

•0.989ms = full “reverse”

1.1. wpilib Package 97

RobotPy WPILib Documentation, Release master

TalonSRX

class wpilib.TalonSRX(channel)
Bases: wpilib.PWMSpeedController

Cross the Road Electronics (CTRE) Talon SRX Speed Controller via PWM

See also:

See CANTalon for CAN control of Talon SRX.

Constructor for a TalonSRX connected via PWM.

Parameters channel (int) – The PWM channel that the TalonSRX is attached to. 0-9 are on-
board, 10-19 are on the MXP port.

Note: The TalonSRX uses the following bounds for PWM values. These values should work reasonably well
for most controllers, but if users experience issues such as asymmetric behavior around the deadband or inability
to saturate the controller in either direction, calibration is recommended. The calibration procedure can be found
in the TalonSRX User Manual available from CTRE.

•2.004ms = full “forward”

•1.520ms = the “high end” of the deadband range

•1.500ms = center of the deadband range (off)

•1.480ms = the “low end” of the deadband range

•0.997ms = full “reverse”

Timer

class wpilib.Timer
Bases: object

Provides time-related functionality for the robot

Note: Prefer to use this module for time functions, instead of the time module in the standard library. This
will make it easier for your code to work properly in simulation.

static delay(seconds)
Pause the thread for a specified time. Pause the execution of the thread for a specified period of time given
in seconds. Motors will continue to run at their last assigned values, and sensors will continue to update.
Only the thread containing the wait will pause until the wait time is expired.

Parameters seconds (float) – Length of time to pause

Warning: If you’re tempted to use this function for autonomous mode to time transitions between
actions, don’t do it!

Delaying the main robot thread for more than a few milliseconds is generally discouraged, and will
cause problems and possibly leave the robot unresponsive.

98 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

get()
Get the current time from the timer. If the clock is running it is derived from the current system clock
the start time stored in the timer class. If the clock is not running, then return the time when it was last
stopped.

Returns Current time value for this timer in seconds

Return type float

static getFPGATimestamp()
Return the system clock time in seconds. Return the time from the FPGA hardware clock in seconds since
the FPGA started.

Returns Robot running time in seconds.

Return type float

static getMatchTime()
Return the approximate match time. The FMS does not currently send the official match time to the robots.
This returns the time since the enable signal sent from the Driver Station. At the beginning of autonomous,
the time is reset to 0.0 seconds. At the beginning of teleop, the time is reset to +15.0 seconds. If the robot
is disabled, this returns 0.0 seconds.

Warning: This is not an official time (so it cannot be used to argue with referees).

Returns Match time in seconds since the beginning of autonomous

Return type float

getMsClock()

Returns the system clock time in milliseconds.

Return type int

hasPeriodPassed(period)
Check if the period specified has passed and if it has, advance the start time by that period. This is useful
to decide if it’s time to do periodic work without drifting later by the time it took to get around to checking.

Parameters period – The period to check for (in seconds).

Returns If the period has passed.

Return type bool

reset()
Reset the timer by setting the time to 0. Make the timer startTime the current time so new requests will be
relative now.

start()
Start the timer running. Just set the running flag to true indicating that all time requests should be relative
to the system clock.

stop()
Stop the timer. This computes the time as of now and clears the running flag, causing all subsequent time
requests to be read from the accumulated time rather than looking at the system clock.

1.1. wpilib Package 99

RobotPy WPILib Documentation, Release master

Ultrasonic

class wpilib.Ultrasonic(pingChannel, echoChannel, units=0)
Bases: wpilib.SensorBase

Ultrasonic rangefinder control

The Ultrasonic rangefinder measures absolute distance based on the round-trip time of a ping generated by the
controller. These sensors use two transducers, a speaker and a microphone both tuned to the ultrasonic range.
A common ultrasonic sensor, the Daventech SRF04 requires a short pulse to be generated on a digital channel.
This causes the chirp to be emmitted. A second line becomes high as the ping is transmitted and goes low when
the echo is received. The time that the line is high determines the round trip distance (time of flight).

Create an instance of the Ultrasonic Sensor. This is designed to supchannel the Daventech SRF04 and Vex
ultrasonic sensors.

Parameters

• pingChannel – The digital output channel that sends the pulse to initiate the sensor send-
ing the ping.

• echoChannel – The digital input channel that receives the echo. The length of time that
the echo is high represents the round trip time of the ping, and the distance.

• units – The units returned in either kInches or kMillimeters

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController

kDisplacement = 0

kRate = 1

class Ultrasonic.Unit
Bases: object

The units to return when PIDGet is called

kInches = 0

kMillimeters = 1

Ultrasonic.automaticEnabled = False
Automatic round robin mode

Ultrasonic.free()

Ultrasonic.getDistanceUnits()
Get the current DistanceUnit that is used for the PIDSource interface.

Returns The type of DistanceUnit that is being used.

Ultrasonic.getPIDSourceType()

Ultrasonic.getRangeInches()
Get the range in inches from the ultrasonic sensor.

Returns Range in inches of the target returned from the ultrasonic sensor. If there is no valid
value yet, i.e. at least one measurement hasn’t completed, then return 0.

Return type float

Ultrasonic.getRangeMM()
Get the range in millimeters from the ultrasonic sensor.

100 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Returns Range in millimeters of the target returned by the ultrasonic sensor. If there is no valid
value yet, i.e. at least one measurement hasn’t complted, then return 0.

Return type float

Ultrasonic.instances = 0

static Ultrasonic.isAutomaticMode()

Ultrasonic.isEnabled()
Is the ultrasonic enabled.

Returns True if the ultrasonic is enabled

Ultrasonic.isRangeValid()
Check if there is a valid range measurement. The ranges are accumulated in a counter that will increment
on each edge of the echo (return) signal. If the count is not at least 2, then the range has not yet been
measured, and is invalid.

Returns True if the range is valid

Return type bool

Ultrasonic.kMaxUltrasonicTime = 0.1
Max time (ms) between readings.

Ultrasonic.kPingTime = 9.999999999999999e-06
Time (sec) for the ping trigger pulse.

Ultrasonic.kPriority = 90
Priority that the ultrasonic round robin task runs.

Ultrasonic.kSpeedOfSoundInchesPerSec = 13560.0

Ultrasonic.pidGet()
Get the range in the current DistanceUnit (PIDSource interface).

Returns The range in DistanceUnit

Return type float

Ultrasonic.ping()
Single ping to ultrasonic sensor. Send out a single ping to the ultrasonic sensor. This only works if
automatic (round robin) mode is disabled. A single ping is sent out, and the counter should count the
semi-period when it comes in. The counter is reset to make the current value invalid.

Ultrasonic.sensors = <_weakrefset.WeakSet object>
ultrasonic sensor list

Ultrasonic.setAutomaticMode(enabling)
Turn Automatic mode on/off. When in Automatic mode, all sensors will fire in round robin, waiting a set
time between each sensor.

Parameters enabling (bool) – Set to true if round robin scheduling should start for all
the ultrasonic sensors. This scheduling method assures that the sensors are non-interfering
because no two sensors fire at the same time. If another scheduling algorithm is preferred,
it can be implemented by pinging the sensors manually and waiting for the results to come
back.

Ultrasonic.setDistanceUnits(units)
Set the current DistanceUnit that should be used for the PIDSource interface.

Parameters units – The DistanceUnit that should be used.

1.1. wpilib Package 101

RobotPy WPILib Documentation, Release master

Ultrasonic.setEnabled(enable)
Set if the ultrasonic is enabled.

Parameters enable (bool) – set to True to enable the ultrasonic

Ultrasonic.setPIDSourceType(pidSource)
Set which parameter you are using as a process control variable.

Parameters pidSource (PIDSource.PIDSourceType) – An enum to select the param-
eter.

static Ultrasonic.ultrasonicChecker()
Background task that goes through the list of ultrasonic sensors and pings each one in turn. The counter is
configured to read the timing of the returned echo pulse.

Warning: DANGER WILL ROBINSON, DANGER WILL ROBINSON: This code runs as a task
and assumes that none of the ultrasonic sensors will change while it’s running. If one does, then this
will certainly break. Make sure to disable automatic mode before changing anything with the sensors!!

Utility

class wpilib.Utility
Bases: object

Contains global utility functions

static getFPGARevision()
Return the FPGA Revision number. The format of the revision is 3 numbers. The 12 most significant bits
are the Major Revision. the next 8 bits are the Minor Revision. The 12 least significant bits are the Build
Number.

Returns FPGA Revision number.

Return type int

static getFPGATime()
Read the microsecond timer from the FPGA.

Returns The current time in microseconds according to the FPGA.

Return type int

static getFPGAVersion()
Return the FPGA Version number.

Returns FPGA Version number.

Return type int

static getUserButton()
Get the state of the “USER” button on the roboRIO.

Returns True if the button is currently pressed down

Return type bool

102 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Victor

class wpilib.Victor(channel)
Bases: wpilib.PWMSpeedController

VEX Robotics Victor 888 Speed Controller via PWM

The Vex Robotics Victor 884 Speed Controller can also be used with this class but may need to be calibrated
per the Victor 884 user manual.

Note: The Victor uses the following bounds for PWM values. These values were determined empirically and
optimized for the Victor 888. These values should work reasonably well for Victor 884 controllers also but if
users experience issues such as asymmetric behaviour around the deadband or inability to saturate the controller
in either direction, calibration is recommended. The calibration procedure can be found in the Victor 884 User
Manual available from VEX Robotics: http://content.vexrobotics.com/docs/ifi-v884-users-manual-9-25-06.pdf

•2.027ms = full “forward”

•1.525ms = the “high end” of the deadband range

•1.507ms = center of the deadband range (off)

•1.49ms = the “low end” of the deadband range

•1.026ms = full “reverse”

Constructor.

Parameters channel (int) – The PWM channel that the Victor is attached to. 0-9 are on-board,
10-19 are on the MXP port

VictorSP

class wpilib.VictorSP(channel)
Bases: wpilib.PWMSpeedController

VEX Robotics Victor SP Speed Controller via PWM

Constructor.

Parameters channel (int) – The PWM channel that the VictorSP is attached to. 0-9 are on-
board, 10-19 are on the MXP port.

Note: The Talon uses the following bounds for PWM values. These values should work reasonably well for
most controllers, but if users experience issues such as asymmetric behavior around the deadband or inability to
saturate the controller in either direction, calibration is recommended. The calibration procedure can be found
in the VictorSP User Manual.

•2.004ms = full “forward”

•1.520ms = the “high end” of the deadband range

•1.500ms = center of the deadband range (off)

•1.480ms = the “low end” of the deadband range

•0.997ms = full “reverse”

1.1. wpilib Package 103

http://content.vexrobotics.com/docs/ifi-v884-users-manual-9-25-06.pdf

RobotPy WPILib Documentation, Release master

XboxController

class wpilib.XboxController(port)
Bases: wpilib.interfaces.GamepadBase

Handle input from Xbox 360 or Xbox One controllers connected to the Driver Station.

This class handles Xbox input that comes from the Driver Station. Each time a value is requested the most
recent value is returned. There is a single class instance for each controller and the mapping of ports to hardware
buttons depends on the code in the Driver Station.

Construct an instance of an XBoxController. The XBoxController index is the USB port on the Driver Station.

Parameters port – The port on the Driver Station that the joystick is plugged into

getAButton()
Read the value of the A button on the controller

Returns The state of the A button

Return type boolean

getBButton()
Read the value of the B button on the controller

Returns The state of the B button

Return type boolean

getBackButton()
Read the value of the back button on the controller

Returns The state of the back button

Return type boolean

getBumper(hand)
Read the values of the bumper button on the controller.

Parameters hand – Side of controller whose value should be returned.

Returns The state of the button

Return type boolean

getName()

getPOV(pov)

getPOVCount()

getRawAxis(axis)
Get the value of the axis

Parameters axis – The axis to read, starting at 0

Returns The value of the axis

Return type float

getRawButton(button)
Get the buttom value (starting at button 1)

Parameters button – The button number to be read (starting at 1)

Returns The state of the button

Return type boolean

104 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

getStartButton()
Read the value of the start button on the controller

Returns The state of the start button

Return type boolean

getStickButton(hand)
Read the values of the stick button on the controller

Parameters hand – Side of the controller whose value should be returned

Returns The state of the button

Return type boolean

getTriggerAxis(hand)
Get the trigger axis value of the controller.

Parameters hand – Side of controller whose value should be returned

Returns The trigger axis value of the controller

Return type float

getType()

getX(hand)
Get the X axis value of the controller.

Parameters hand – Side of controller whose value should be returned

Returns The X axis value of the controller

Return type float

getXButton()
Read the value of the X button on the controller

Returns The state of the X button

Return type boolean

getY(hand)
Get the Y axis value of the controller.

Parameters hand – Side of controller whose value should be returned

Returns The Y axis value of the controller

Return type float

getYButton()
Read the value of the Y button on the controller

Returns The state of the Y button

Return type boolean

setOutput(outputNumber, value)

setOutputs(value)

setRumble(type_, value)

1.1. wpilib Package 105

RobotPy WPILib Documentation, Release master

wpilib.buttons Package

Classes in this package are used to interface various types of buttons to a command-based robot.

If you are not using the Command framework, you can ignore these classes.

wpilib.buttons.Button This class provides an easy way to link commands to OI
inputs.

wpilib.buttons.InternalButton([...]) This class is intended to be used within a program.
wpilib.buttons.JoystickButton(...) Create a joystick button for triggering commands.
wpilib.buttons.NetworkButton(...)
wpilib.buttons.Trigger This class provides an easy way to link commands to in-

puts.

Button

class wpilib.buttons.Button
Bases: wpilib.buttons.Trigger

This class provides an easy way to link commands to OI inputs.

It is very easy to link a button to a command. For instance, you could link the trigger button of a joystick to a
“score” command.

This class represents a subclass of Trigger that is specifically aimed at buttons on an operator interface as a
common use case of the more generalized Trigger objects. This is a simple wrapper around Trigger with the
method names renamed to fit the Button object use.

cancelWhenPressed(command)
Cancel the command when the button is pressed.

Parameters command –

toggleWhenPressed(command)
Toggles the command whenever the button is pressed (on then off then on).

Parameters command –

whenPressed(command)
Starts the given command whenever the button is newly pressed.

Parameters command – the command to start

whenReleased(command)
Starts the command when the button is released.

Parameters command – the command to start

whileHeld(command)
Constantly starts the given command while the button is held.

Command.start() will be called repeatedly while the button is held, and will be canceled when the
button is released.

Parameters command – the command to start

106 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

InternalButton

class wpilib.buttons.InternalButton(inverted=False)
Bases: wpilib.buttons.Button

This class is intended to be used within a program. The programmer can manually set its value. Includes a
setting for whether or not it should invert its value.

Creates an InternalButton which is inverted depending on the input.

Parameters inverted – If False, then this button is pressed when set to True, otherwise it is
pressed when set to False.

get()

setInverted(inverted)

setPressed(pressed)

JoystickButton

class wpilib.buttons.JoystickButton(joystick, buttonNumber)
Bases: wpilib.buttons.Button

Create a joystick button for triggering commands.

Parameters

• joystick – The GenericHID object that has the button (e.g. Joystick,
KinectStick, etc)

• buttonNumber – The button number (see GenericHID.getRawButton())

get()
Gets the value of the joystick button.

Returns The value of the joystick button

NetworkButton

class wpilib.buttons.NetworkButton(table, field)
Bases: wpilib.buttons.Button

get()

Trigger

class wpilib.buttons.Trigger
Bases: object

This class provides an easy way to link commands to inputs.

It is very easy to link a button to a command. For instance, you could link the trigger button of a joystick to a
“score” command.

It is encouraged that teams write a subclass of Trigger if they want to have something unusual (for instance, if
they want to react to the user holding a button while the robot is reading a certain sensor input). For this, they
only have to write the get() method to get the full functionality of the Trigger class.

1.2. wpilib.buttons Package 107

RobotPy WPILib Documentation, Release master

cancelWhenActive(command)
Cancels a command when the trigger becomes active.

Parameters command – the command to cancel

get()
Returns whether or not the trigger is active

This method will be called repeatedly a command is linked to the Trigger.

Returns whether or not the trigger condition is active.

grab()
Returns whether get() returns True or the internal table for SmartDashboard use is pressed.

toggleWhenActive(command)
Toggles a command when the trigger becomes active.

Parameters command – the command to toggle

whenActive(command)
Starts the given command whenever the trigger just becomes active.

Parameters command – the command to start

whenInactive(command)
Starts the command when the trigger becomes inactive.

Parameters command – the command to start

whileActive(command)
Constantly starts the given command while the button is held.

Command.start() will be called repeatedly while the trigger is active, and will be canceled when the
trigger becomes inactive.

Parameters command – the command to start

wpilib.command Package

Objects in this package allow you to implement a robot using Command-based programming. Command based pro-
gramming is a design pattern to help you organize your robot programs, by organizing your robot program into
components based on Command and Subsystem

The python implementation of the Command framework closely follows the Java language implementation. RobotPy
has several examples of command based robots available.

Each one of the objects in the Command framework has detailed documentation available. If you need more infor-
mation, for examples, tutorials, and other detailed information on programming your robot using this pattern, we
recommend that you consult the Java version of the FRC Control System documentation

wpilib.command.Command([name, timeout]) The Command class is at the very core of the entire com-
mand framework.

wpilib.command.CommandGroup([name]) A CommandGroup is a list of commands which are exe-
cuted in sequence.

wpilib.command.ConditionalCommand(name) A ConditionalCommand is a Command that starts one of
two commands.

wpilib.command.InstantCommand([name]) A command that has no duration.
Continued on next page

108 Chapter 1. WPILib API

http://wpilib.screenstepslive.com/s/4485/m/13809/c/88893

RobotPy WPILib Documentation, Release master

Table 1.3 – continued from previous page
wpilib.command.PIDCommand(p, i, d) This class defines a Command which interacts heavily with

a PID loop.
wpilib.command.PIDSubsystem(p, i, d) This class is designed to handle the case where there is a

Subsystem which uses a single {@link PIDController} al-
most constantly (for instance, an elevator which attempts
to stay at a constant height).

wpilib.command.PrintCommand(message) A PrintCommand is a command which prints out a string
when it is initialized, and then immediately finishes.

wpilib.command.Scheduler() The Scheduler is a singleton which holds the top-level run-
ning commands.

wpilib.command.StartCommand(...) A StartCommand will call the start() method of another
command when it is initialized and will finish immediately.

wpilib.command.Subsystem([name]) This class defines a major component of the robot.
wpilib.command.TimedCommand(...) A command that runs for a set period of time.
wpilib.command.WaitCommand(timeout) A WaitCommand will wait for a certain amount of time

before finishing.
wpilib.command.WaitForChildren([...]) This command will only finish if whatever

CommandGroup it is in has no active children.
wpilib.command.WaitUntilCommand(time) This will wait until the game clock reaches some value,

then continue to the next command.

Command

class wpilib.command.Command(name=None, timeout=None)
Bases: wpilib.Sendable

The Command class is at the very core of the entire command framework. Every command can be started
with a call to start(). Once a command is started it will call initialize(), and then will repeatedly call
execute() until isFinished() returns True. Once it does, end() will be called.

However, if at any point while it is running cancel() is called, then the command will be stopped and
interrupted() will be called.

If a command uses a Subsystem, then it should specify that it does so by calling the requires() method
in its constructor. Note that a Command may have multiple requirements, and requires() should be called
for each one.

If a command is running and a new command with shared requirements is started, then one of two things
will happen. If the active command is interruptible, then cancel() will be called and the command will be
removed to make way for the new one. If the active command is not interruptible, the other one will not even be
started, and the active one will continue functioning.

See also:

Subsystem, CommandGroup

Creates a new command.

Parameters

• name – The name for this command; if unspecified or None, The name of this command
will be set to its class name.

• timeout – The time (in seconds) before this command “times out”. Default is no timeout.
See isTimedOut().

1.3. wpilib.command Package 109

mailto:\protect \T1\textbraceleft @link

RobotPy WPILib Documentation, Release master

cancel()
This will cancel the current command.

This will cancel the current command eventually. It can be called multiple times. And it can be called
when the command is not running. If the command is running though, then the command will be marked
as canceled and eventually removed.

Warning: A command can not be canceled if it is a part of a CommandGroup, you must cancel the
CommandGroup instead.

clearRequirements()
Clears list of subsystem requirements. This is only used by ConditionalCommand so cancelling the
chosen command works properly in CommandGroup.

doesRequire(system)
Checks if the command requires the given Subsystem.

Parameters system – the system

Returns whether or not the subsystem is required, or False if given None.

end()
Called when the command ended peacefully. This is where you may want to wrap up loose ends, like
shutting off a motor that was being used in the command.

execute()
The execute method is called repeatedly until this Command either finishes or is canceled.

getGroup()
Returns the CommandGroup that this command is a part of. Will return None if this Command is not in
a group.

Returns the CommandGroup that this command is a part of (or None if not in group)

getName()
Returns the name of this command. If no name was specified in the constructor, then the default is the
name of the class.

Returns the name of this command

getRequirements()
Returns the requirements (as a set of Subsystems) of this command

initialize()
The initialize method is called the first time this Command is run after being started.

interrupted()
Called when the command ends because somebody called cancel() or another command shared the same
requirements as this one, and booted it out.

This is where you may want to wrap up loose ends, like shutting off a motor that was being used in the
command.

Generally, it is useful to simply call the end() method within this method, as done here.

isCanceled()
Returns whether or not this has been canceled.

Returns whether or not this has been canceled

110 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

isFinished()
Returns whether this command is finished. If it is, then the command will be removed and end() will be
called.

It may be useful for a team to reference the isTimedOut() method for time-sensitive commands, or override
TimedCommand.

If you do not specify isFinished in your command, the command will only end if interrupted or canceled.
If you want a command that executes only once and then ends, override InstantCommand.

Returns whether this command is finished.

See isTimedOut()

See

class .TimedCommand

See

class .InstantCommand

isInterruptible()
Returns whether or not this command can be interrupted.

Returns whether or not this command can be interrupted

isRunning()
Returns whether or not the command is running. This may return true even if the command has just been
canceled, as it may not have yet called interrupted().

Returns whether or not the command is running

isTimedOut()
Returns whether or not the timeSinceInitialized() method returns a number which is greater
than or equal to the timeout for the command. If there is no timeout, this will always return false.

Returns whether the time has expired

lockChanges()
Prevents further changes from being made

removed()
Called when the command has been removed. This will call interrupted() or end().

requires(subsystem)
This method specifies that the given Subsystem is used by this command. This method is crucial to the
functioning of the Command System in general.

Note that the recommended way to call this method is in the constructor.

Parameters subsystem – the Subsystem required

run()
The run method is used internally to actually run the commands.

Returns whether or not the command should stay within the Scheduler.

setInterruptible(interruptible)
Sets whether or not this command can be interrupted.

Parameters interruptible – whether or not this command can be interrupted

setParent(parent)
Sets the parent of this command. No actual change is made to the group.

1.3. wpilib.command Package 111

RobotPy WPILib Documentation, Release master

Parameters parent – the parent

setRunWhenDisabled(run)
Sets whether or not this {@link Command} should run when the robot is disabled.

By default a command will not run when the robot is disabled, and will in fact be canceled.

Parameters run – whether or not this command should run when the robot is disabled

setTimeout(seconds)
Sets the timeout of this command.

Parameters seconds – the timeout (in seconds)

See isTimedOut()

start()
Starts up the command. Gets the command ready to start. Note that the command will eventually start,
however it will not necessarily do so immediately, and may in fact be canceled before initialize is even
called.

startRunning()
This is used internally to mark that the command has been started. The lifecycle of a command is:

•startRunning() is called.

•run() is called (multiple times potentially)

•removed() is called

It is very important that startRunning() and removed() be called in order or some assumptions of
the code will be broken.

startTiming()
Called to indicate that the timer should start. This is called right before initialize() is, inside the run()
method.

timeSinceInitialized()
Returns the time since this command was initialized (in seconds). This function will work even if there is
no specified timeout.

Returns the time since this command was initialized (in seconds).

willRunWhenDisabled()
Returns whether or not this Command will run when the robot is disabled, or if it will cancel itself.

CommandGroup

class wpilib.command.CommandGroup(name=None)
Bases: wpilib.command.Command

A CommandGroup is a list of commands which are executed in sequence.

Commands in a CommandGroup are added using the addSequential() method and are called sequentially.
CommandGroups are themselves Commands and can be given to other CommandGroups.

CommandGroups will carry all of the requirements of their subcommands. Additional requirements can be
specified by calling requires() normally in the constructor.

CommandGroups can also execute commands in parallel, simply by adding them using addParallel(...).

See also:

Command, Subsystem

112 Chapter 1. WPILib API

mailto:\protect \T1\textbraceleft @link

RobotPy WPILib Documentation, Release master

Creates a new CommandGroup with the given name.

Parameters name – the name for this command group (optional). If None, the name of this com-
mand will be set to its class name.

class Entry(command, state, timeout)
Bases: object

BRANCH_CHILD = 2

BRANCH_PEER = 1

IN_SEQUENCE = 0

isTimedOut()

CommandGroup.addParallel(command, timeout=None)
Adds a new child Command to the group (with an optional timeout). The Command will be started after
all the previously added Commands.

Once the Command is started, it will run until it finishes, is interrupted, or the time expires (if a timeout is
provided), whichever is sooner. Note that the given Command will have no knowledge that it is on a timer.

Instead of waiting for the child to finish, a CommandGroup will have it run at the same time as the
subsequent Commands. The child will run until either it finishes, the timeout expires, a new child with
conflicting requirements is started, or the main sequence runs a Command with conflicting requirements.
In the latter two cases, the child will be canceled even if it says it can’t be interrupted.

Note that any requirements the given Command has will be added to the group. For this reason, a Com-
mand’s requirements can not be changed after being added to a group.

It is recommended that this method be called in the constructor.

Parameters

• command – The command to be added

• timeout – The timeout (in seconds) (optional)

CommandGroup.addSequential(command, timeout=None)
Adds a new Command to the group (with an optional timeout). The Command will be started after all the
previously added Commands.

Once the Command is started, it will be run until it finishes or the time expires, whichever is sooner (if a
timeout is provided). Note that the given Command will have no knowledge that it is on a timer.

Note that any requirements the given Command has will be added to the group. For this reason, a Com-
mand’s requirements can not be changed after being added to a group.

It is recommended that this method be called in the constructor.

Parameters

• command – The Command to be added

• timeout – The timeout (in seconds) (optional)

CommandGroup.cancelConflicts(command)

CommandGroup.end()

CommandGroup.execute()

CommandGroup.initialize()

CommandGroup.interrupted()

1.3. wpilib.command Package 113

RobotPy WPILib Documentation, Release master

CommandGroup.isFinished()
Returns True if all the Commands in this group have been started and have finished.

Teams may override this method, although they should probably reference super().isFinished() if they do.

Returns whether this CommandGroup is finished

CommandGroup.isInterruptible()
Returns whether or not this group is interruptible. A command group will be uninterruptible if setInter-
ruptable(False) was called or if it is currently running an uninterruptible command or child.

Returns whether or not this CommandGroup is interruptible.

ConditionalCommand

class wpilib.command.ConditionalCommand(name, onTrue=None, onFalse=None)
Bases: wpilib.command.Command

A ConditionalCommand is a Command that starts one of two commands.

A ConditionalCommand uses m_condition to determine whether it should run m_onTrue or m_onFalse.

A ConditionalCommand adds the proper Command to the Scheduler during initialize() and then
isFinished() will return true once that Command has finished executing.

If no Command is specified for m_onFalse, the occurrence of that condition will be a no-op.

@see Command @see Scheduler

Creates a new ConditionalCommand with given name and onTrue and onFalse Commands.

Users of this constructor should also override condition().

Parameters

• name – the name for this command group

• onTrue – The Command to execute if {@link ConditionalCommand#condition()} returns
true

• onFalse – The Command to execute if {@link ConditionalCommand#condition()} re-
turns false

condition()
The Condition to test to determine which Command to run.

Returns true if m_onTrue should be run or false if m_onFalse should be run.

interrupted()

isFinished()

InstantCommand

class wpilib.command.InstantCommand(name=None)
Bases: wpilib.command.Command

A command that has no duration. Subclasses should implement the initialize() method to carry out desired
actions.

isFinished()

114 Chapter 1. WPILib API

mailto:\protect \T1\textbraceleft @link
mailto:\protect \T1\textbraceleft @link

RobotPy WPILib Documentation, Release master

PIDCommand

class wpilib.command.PIDCommand(p, i, d, period=None, f=0.0, name=None)
Bases: wpilib.command.Command

This class defines a Command which interacts heavily with a PID loop.

It provides some convenience methods to run an internal PIDController. It will also start and stop said PIDCon-
troller when the PIDCommand is first initialized and ended/interrupted.

Instantiates a PIDCommand that will use the given p, i and d values. It will use the class name as its name unless
otherwise specified. It will also space the time between PID loop calculations to be equal to the given period.

Parameters

• p – the proportional value

• i – the integral value

• d – the derivative value

• period – the time (in seconds) between calculations (optional)

• f – the feed forward value

• name – the name (optional)

getPIDController()
Returns the PIDController used by this PIDCommand. Use this if you would like to fine tune the pid loop.

Notice that calling setSetpoint(...) on the controller will not result in the setpoint being trimmed to be in
the range defined by setSetpointRange(...).

Returns the PIDController used by this PIDCommand

getPosition()
Returns the current position

Returns the current position

getSetpoint()
Returns the setpoint.

Returns the setpoint

returnPIDInput()
Returns the input for the pid loop.

It returns the input for the pid loop, so if this command was based off of a gyro, then it should return the
angle of the gyro

All subclasses of PIDCommand must override this method.

This method will be called in a different thread then the Scheduler thread.

Returns the value the pid loop should use as input

setSetpoint(setpoint)
Sets the setpoint to the given value. If setRange() was called, then the given setpoint will be trimmed
to fit within the range.

Parameters setpoint – the new setpoint

setSetpointRelative(deltaSetpoint)
Adds the given value to the setpoint. If setRange() was used, then the bounds will still be honored by
this method.

1.3. wpilib.command Package 115

RobotPy WPILib Documentation, Release master

Parameters deltaSetpoint – the change in the setpoint

usePIDOutput(output)
Uses the value that the pid loop calculated. The calculated value is the “output” parameter. This method is
a good time to set motor values, maybe something along the lines of driveline.tankDrive(output, -output).

All subclasses of PIDCommand should override this method.

This method will be called in a different thread then the Scheduler thread.

Parameters output – the value the pid loop calculated

PIDSubsystem

class wpilib.command.PIDSubsystem(p, i, d, period=None, f=0.0, name=None)
Bases: wpilib.command.Subsystem

This class is designed to handle the case where there is a Subsystem which uses a single {@link PIDController}
almost constantly (for instance, an elevator which attempts to stay at a constant height).

It provides some convenience methods to run an internal PIDController. It also allows access to the internal
PIDController in order to give total control to the programmer.

Instantiates a PIDSubsystem that will use the given p, i and d values. It will use the class name as its name
unless otherwise specified. It will also space the time between PID loop calculations to be equal to the given
period.

Parameters

• p – the proportional value

• i – the integral value

• d – the derivative value

• period – the time (in seconds) between calculations (optional)

• f – the feed forward value

• name – the name (optional)

disable()
Disables the internal PIDController

enable()
Enables the internal PIDController

getPIDController()
Returns the PIDController used by this PIDSubsystem. Use this if you would like to fine tune the pid loop.

Notice that calling setSetpoint() on the controller will not result in the setpoint being trimmed to be
in the range defined by setSetpointRange().

Returns the PIDController used by this PIDSubsystem

getPosition()
Returns the current position

Returns the current position

getSetpoint()
Returns the setpoint.

Returns the setpoint

116 Chapter 1. WPILib API

mailto:\protect \T1\textbraceleft @link

RobotPy WPILib Documentation, Release master

onTarget()
Return True if the error is within the percentage of the total input range, determined by setAbsoluteToler-
ance or setPercentTolerance. This assumes that the maximum and minimum input were set using setInput.

Returns True if the error is less than the tolerance

returnPIDInput()
Returns the input for the pid loop.

It returns the input for the pid loop, so if this command was based off of a gyro, then it should return the
angle of the gyro

All subclasses of PIDSubsystem must override this method.

This method will be called in a different thread then the Scheduler thread.

Returns the value the pid loop should use as input

setAbsoluteTolerance(t)
Set the absolute error which is considered tolerable for use with OnTarget.

Parameters t – The absolute tolerance (same range as the PIDInput values)

setInputRange(minimumInput, maximumInput)
Sets the maximum and minimum values expected from the input.

Parameters

• minimumInput – the minimum value expected from the input

• maximumInput – the maximum value expected from the output

setOutputRange(minimumOutput, maximumOutput)
Sets the maximum and minimum values to write.

Parameters

• minimumOutput – the minimum value to write to the output

• maximumOutput – the maximum value to write to the output

setPercentTolerance(p)
Set the percentage error which is considered tolerable for use with OnTarget.

Parameters p – The percentage tolerance (value of 15.0 == 15 percent)

setSetpoint(setpoint)
Sets the setpoint to the given value. If setRange() was called, then the given setpoint will be trimmed
to fit within the range.

Parameters setpoint – the new setpoint

setSetpointRelative(deltaSetpoint)
Adds the given value to the setpoint. If setRange() was used, then the bounds will still be honored by
this method.

Parameters deltaSetpoint – the change in the setpoint

usePIDOutput(output)
Uses the value that the pid loop calculated. The calculated value is the “output” parameter. This method is
a good time to set motor values, maybe something along the lines of driveline.tankDrive(output, -output).

All subclasses of PIDSubsystem should override this method.

This method will be called in a different thread then the Scheduler thread.

Parameters output – the value the pid loop calculated

1.3. wpilib.command Package 117

RobotPy WPILib Documentation, Release master

PrintCommand

class wpilib.command.PrintCommand(message)
Bases: wpilib.command.InstantCommand

A PrintCommand is a command which prints out a string when it is initialized, and then immediately finishes.

It is useful if you want a CommandGroup to print out a string when it reaches a certain point.

Instantiates a PrintCommand which will print the given message when it is run.

Parameters message – the message to print

initialize()

Scheduler

class wpilib.command.Scheduler
Bases: wpilib.Sendable

The Scheduler is a singleton which holds the top-level running commands. It is in charge of both calling
the command’s run() method and to make sure that there are no two commands with conflicting requirements
running.

It is fine if teams wish to take control of the Scheduler themselves, all that needs to be done is to call Sched-
uler.getInstance().run() often to have Commands function correctly. However, this is already done for you if you
use the CommandBased Robot template.

See also:

Command

Instantiates a Scheduler.

add(command)
Adds the command to the Scheduler. This will not add the Command immediately, but will instead wait for
the proper time in the run() loop before doing so. The command returns immediately and does nothing
if given null.

Adding a Command to the Scheduler involves the Scheduler removing any Command which has shared
requirements.

Parameters command – the command to add

addButton(button)
Adds a button to the Scheduler. The Scheduler will poll the button during its run().

Parameters button – the button to add

disable()
Disable the command scheduler.

enable()
Enable the command scheduler.

static getInstance()
Returns the Scheduler, creating it if one does not exist.

Returns the Scheduler

getName()

getType()

118 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

registerSubsystem(system)
Registers a Subsystem to this Scheduler, so that the Scheduler might know if a default Command needs
to be run. All Subsystem objects should call this.

Parameters system – the system

remove(command)
Removes the Command from the Scheduler.

Parameters command – the command to remove

removeAll()
Removes all commands

run()
Runs a single iteration of the loop. This method should be called often in order to have a functioning
Command system. The loop has five stages:

•Poll the Buttons

•Execute/Remove the Commands

•Send values to SmartDashboard

•Add Commands

•Add Defaults

StartCommand

class wpilib.command.StartCommand(commandToStart)
Bases: wpilib.command.InstantCommand

A StartCommand will call the start() method of another command when it is initialized and will finish immedi-
ately.

Instantiates a StartCommand which will start the given command whenever its initialize() is called.

Parameters commandToStart – the Command to start

initialize()

Subsystem

class wpilib.command.Subsystem(name=None)
Bases: wpilib.Sendable

This class defines a major component of the robot.

A good example of a subsystem is the driveline, or a claw if the robot has one.

All motors should be a part of a subsystem. For instance, all the wheel motors should be a part of some kind of
“Driveline” subsystem.

Subsystems are used within the command system as requirements for Command. Only one command which
requires a subsystem can run at a time. Also, subsystems can have default commands which are started if there
is no command running which requires this subsystem.

See also:

Command

Creates a subsystem.

1.3. wpilib.command Package 119

RobotPy WPILib Documentation, Release master

Parameters name – the name of the subsystem; if None, it will be set to the name to the name of
the class.

confirmCommand()
Call this to alert Subsystem that the current command is actually the command. Sometimes, the Subsystem
is told that it has no command while the Scheduler is going through the loop, only to be soon after given a
new one. This will avoid that situation.

getCurrentCommand()
Returns the command which currently claims this subsystem.

Returns the command which currently claims this subsystem

getDefaultCommand()
Returns the default command (or None if there is none).

Returns the default command

getName()
Returns the name of this subsystem, which is by default the class name.

Returns the name of this subsystem

initDefaultCommand()
Initialize the default command for a subsystem By default subsystems have no default command, but if
they do, the default command is set with this method. It is called on all Subsystems by CommandBase in
the users program after all the Subsystems are created.

setCurrentCommand(command)
Sets the current command

Parameters command – the new current command

setDefaultCommand(command)
Sets the default command. If this is not called or is called with None, then there will be no default command
for the subsystem.

Parameters command – the default command (or None if there should be none)

Warning: This should NOT be called in a constructor if the subsystem is a singleton.

TimedCommand

class wpilib.command.TimedCommand(name, timeoutInSeconds)
Bases: wpilib.command.Command

A command that runs for a set period of time.

isFinished()

WaitCommand

class wpilib.command.WaitCommand(timeout, name=None)
Bases: wpilib.command.TimedCommand

A WaitCommand will wait for a certain amount of time before finishing. It is useful if you want a
CommandGroup to pause for a moment.

See also:

120 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

CommandGroup

Instantiates a WaitCommand with the given timeout.

Parameters

• timeout – the time the command takes to run

• name – the name of the command (optional)

WaitForChildren

class wpilib.command.WaitForChildren(name=None, timeout=None)
Bases: wpilib.command.Command

This command will only finish if whatever CommandGroup it is in has no active children. If it is not a part of
a CommandGroup, then it will finish immediately. If it is itself an active child, then the CommandGroup will
never end.

This class is useful for the situation where you want to allow anything running in parallel to finish, before
continuing in the main CommandGroup sequence.

Creates a new command.

Parameters

• name – The name for this command; if unspecified or None, The name of this command
will be set to its class name.

• timeout – The time (in seconds) before this command “times out”. Default is no timeout.
See isTimedOut().

isFinished()

WaitUntilCommand

class wpilib.command.WaitUntilCommand(time)
Bases: wpilib.command.Command

This will wait until the game clock reaches some value, then continue to the next command.

isFinished()

wpilib.interfaces Package

This package contains objects that can be used to determine the requirements of various interfaces used in WPILib.

Generally, the python version of WPILib does not require that you inherit from any of these interfaces, but instead will
allow you to use custom objects as long as they have the same methods.

wpilib.interfaces.Accelerometer Interface for 3-axis accelerometers
wpilib.interfaces.Controller An interface for controllers.
wpilib.interfaces.CounterBase Interface for counting the number of ticks on a digital input

channel.
wpilib.interfaces.GenericHID(port) GenericHID Interface.
wpilib.interfaces.Gyro Interface for yaw rate gyros

Continued on next page

1.4. wpilib.interfaces Package 121

RobotPy WPILib Documentation, Release master

Table 1.4 – continued from previous page
wpilib.interfaces.NamedSendable The interface for sendable objects that gives the sendable a

default name in the Smart Dashboard.
wpilib.interfaces.PIDInterface
wpilib.interfaces.PIDOutput This interface allows PIDController to write its results

to its output.
wpilib.interfaces.PIDSource This interface allows for PIDController to automati-

cally read from this object.
wpilib.interfaces.Potentiometer
wpilib.interfaces.SpeedController Interface for speed controlling devices.

Accelerometer

class wpilib.interfaces.Accelerometer
Bases: object

Interface for 3-axis accelerometers

class Range
Bases: object

k16G = 3

k2G = 0

k4G = 1

k8G = 2

Accelerometer.getX()
Common interface for getting the x axis acceleration

Returns The acceleration along the x axis in g-forces

Accelerometer.getY()
Common interface for getting the y axis acceleration

Returns The acceleration along the y axis in g-forces

Accelerometer.getZ()
Common interface for getting the z axis acceleration

Returns The acceleration along the z axis in g-forces

Accelerometer.setRange(range)
Common interface for setting the measuring range of an accelerometer.

Parameters range – The maximum acceleration, positive or negative, that the accelerometer
will measure. Not all accelerometers support all ranges.

Controller

class wpilib.interfaces.Controller
Bases: object

An interface for controllers. Controllers run control loops, the most command are PID controllers and there
variants, but this includes anything that is controlling an actuator in a separate thread.

disable()
Stops the control loop from running until explicitly re-enabled by calling enable().

122 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

enable()
Allows the control loop to run.

CounterBase

class wpilib.interfaces.CounterBase
Bases: object

Interface for counting the number of ticks on a digital input channel. Encoders, Gear tooth sensors, and counters
should all subclass this so it can be used to build more advanced classes for control and driving.

All counters will immediately start counting - reset() them if you need them to be zeroed before use.

class EncodingType
Bases: object

The number of edges for the counterbase to increment or decrement on

k1X = 0
Count only the rising edge

k2X = 1
Count both the rising and falling edge

k4X = 2
Count rising and falling on both channels

CounterBase.get()
Get the count

Returns the count

CounterBase.getDirection()
Determine which direction the counter is going

Returns True for one direction, False for the other

CounterBase.getPeriod()
Get the time between the last two edges counted

Returns the time beteween the last two ticks in seconds

CounterBase.getStopped()
Determine if the counter is not moving

Returns True if the counter has not changed for the max period

CounterBase.reset()
Reset the count to zero

CounterBase.setMaxPeriod(maxPeriod)
Set the maximum time between edges to be considered stalled

Parameters maxPeriod – the maximum period in seconds

GenericHID

class wpilib.interfaces.GenericHID(port)
Bases: object

GenericHID Interface.

1.4. wpilib.interfaces Package 123

RobotPy WPILib Documentation, Release master

class HIDType(value)
Bases: object

kHID1stPerson = 24

kHIDDriving = 22

kHIDFlight = 23

kHIDGamepad = 21

kHIDJoystick = 20

kUnknown = -1

kXInputArcadePad = 19

kXInputArcadeStick = 3

kXInputDancePad = 5

kXInputDrumKit = 8

kXInputFlightStick = 4

kXInputGamepad = 1

kXInputGuitar = 6

kXInputGuitar2 = 7

kXInputGuitar3 = 11

kXInputUnknown = 0

kXInputWheel = 2

class GenericHID.Hand
Bases: object

Which hand the Human Interface Device is associated with.

kLeft = 0
Left Hand

kRight = 1
Right Hand

class GenericHID.RumbleType
Bases: object

Represents a rumble output on the JoyStick.

kLeftRumble = 0
Left Hand

kRightRumble = 1
Right Hand

GenericHID.getName()
Get the name of the HID.

Returns the name of the HID.

GenericHID.getPOV(pov=0)
Get the angle in degrees of a POV on the HID.

The POV angles start at 0 in the up direction, and increase clockwise (eg right is 90, upper-left is 315).

124 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

Parameters pov – The index of the POV to read (starting at 0)

Returns the angle of the POV in degrees, or -1 if the POV is not pressed.

GenericHID.getPOVCount()
For the current HID, return the number of POVs.

GenericHID.getPort()
Get the port number of the HID.

Returns The port number of the HID.

GenericHID.getRawAxis(which)
Get the raw axis.

Parameters which – index of the axis

Returns the raw value of the selected axis

GenericHID.getRawButton(button)
Is the given button pressed.

Parameters button – which button number

Returns the angle of the POV in degrees, or -1 if the POV is not pressed.

GenericHID.getType()
Get the type of the HID.

Returns the type of the HID.

GenericHID.getX(hand=None)
Get the x position of HID.

Parameters hand – which hand, left or right

Returns the x position

GenericHID.getY(hand=None)
Get the y position of the HID.

Parameters hand – which hand, left or right

Returns the y position

GenericHID.setOutput(outputNumber, value)
Set a single HID output value for the HID.

Parameters

• outputNumber – The index of the output to set (1-32)

• value – The value to set the output to

GenericHID.setOutputs(value)
Set all HID output values for the HID.

Parameters value – The 32 bit output value (1 bit for each output)

GenericHID.setRumble(type, value)
Set the rumble output for the HID. The DS currently supports 2 rumble values, left rumble and right
rumble.

Parameters

• type – Which rumble value to set

• value – The normalized value (0 to 1) to set the rumble to

1.4. wpilib.interfaces Package 125

RobotPy WPILib Documentation, Release master

Gyro

class wpilib.interfaces.Gyro
Bases: object

Interface for yaw rate gyros

calibrate()
Calibrate the gyro by running for a number of samples and computing the center value. Then use the center
value as the Accumulator center value for subsequent measurements.

It’s important to make sure that the robot is not moving while the centering calculations are in progress,
this is typically done when the robot is first turned on while it’s sitting at rest before the competition starts.

Note: Usually you don’t need to call this, as it’s called when the object is first created. If you do, it will
freeze your robot for 5 seconds

free()
Free the resources used by the gyro

getAngle()
Return the actual angle in degrees that the robot is currently facing.

The angle is based on the current accumulator value corrected by the oversampling rate, the gyro type and
the A/D calibration values. The angle is continuous, that is it will continue from 360 to 361 degrees. This
allows algorithms that wouldn’t want to see a discontinuity in the gyro output as it sweeps past from 360
to 0 on the second time around.

Returns the current heading of the robot in degrees. This heading is based on integration of the
returned rate from the gyro.

getRate()
Return the rate of rotation of the gyro

The rate is based on the most recent reading of the gyro analog value

Returns the current rate in degrees per second

reset()
Reset the gyro. Resets the gyro to a heading of zero. This can be used if there is significant drift in the
gyro and it needs to be recalibrated after it has been running.

NamedSendable

class wpilib.interfaces.NamedSendable
Bases: wpilib.Sendable

The interface for sendable objects that gives the sendable a default name in the Smart Dashboard.

getName()

Returns The name of the subtable of SmartDashboard that the Sendable object will use

PIDInterface

class wpilib.interfaces.PIDInterface
Bases: wpilib.interfaces.Controller

126 Chapter 1. WPILib API

RobotPy WPILib Documentation, Release master

disable()

enable()

getD()

getError()

getI()

getP()

getSetpoint()

isEnabled()

reset()

setPID(p, i, d)

setSetpoint(setpoint)

PIDOutput

class wpilib.interfaces.PIDOutput
Bases: object

This interface allows PIDController to write its results to its output.

pidWrite(output)
Set the output to the value calculated by PIDController.

Parameters output – the value calculated by PIDController

PIDSource

class wpilib.interfaces.PIDSource
Bases: object

This interface allows for PIDController to automatically read from this object.

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController

kDisplacement = 0

kRate = 1

static PIDSource.from_obj_or_callable(objc)
Utility method that gets a PIDSource object

Parameters objc – An object that implements the PIDSource interface, or a callable

Returns an object that implements the PIDSource interface

PIDSource.getPIDSourceType()

Get which parameter of the device you are using as a process control variable.

Returns the currently selected PID source parameter

1.4. wpilib.interfaces Package 127

RobotPy WPILib Documentation, Release master

PIDSource.pidGet()
Get the result to use in PIDController

Returns the result to use in PIDController

PIDSource.setPIDSourceType(pidSource)
Set which parameter of the device you are using as a process control variable.

Parameters pidSource (PIDSourceType) – An enum to select the parameter.

Potentiometer

class wpilib.interfaces.Potentiometer
Bases: wpilib.interfaces.PIDSource

get()

SpeedController

class wpilib.interfaces.SpeedController
Bases: wpilib.interfaces.PIDOutput

Interface for speed controlling devices.

disable()
Disable the speed controller.

get()
Common interface for getting the current set speed of a speed controller.

Returns The current set speed. Value is between -1.0 and 1.0.

getInverted()
Common interface for determining if a speed controller is in the inverted state or not.

Returns True if in inverted state

set(speed)
Common interface for setting the speed of a speed controller.

Parameters speed – The speed to set. Value should be between -1.0 and 1.0.

setInverted(isInverted)
Common interface for inverting direction of a speed controller.

Parameters isInverted – The state of inversion

stopMotor()
Stops motor movement. Motor can be moved again by calling set without having to re-enable the motor.

128 Chapter 1. WPILib API

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

129

RobotPy WPILib Documentation, Release master

130 Chapter 2. Indices and tables

Python Module Index

w
wpilib, 3
wpilib.adxl345_i2c, 5
wpilib.adxl345_spi, 7
wpilib.adxl362, 8
wpilib.adxrs450_gyro, 10
wpilib.analogaccelerometer, 11
wpilib.analoggyro, 12
wpilib.analoginput, 13
wpilib.analogoutput, 16
wpilib.analogpotentiometer, 17
wpilib.analogtrigger, 18
wpilib.analogtriggeroutput, 19
wpilib.builtinaccelerometer, 20
wpilib.buttons, 106
wpilib.buttons.button, 106
wpilib.buttons.internalbutton, 107
wpilib.buttons.joystickbutton, 107
wpilib.buttons.networkbutton, 107
wpilib.buttons.trigger, 107
wpilib.cameraserver, 21
wpilib.canjaguar, 21
wpilib.cantalon, 21
wpilib.command, 108
wpilib.command.command, 109
wpilib.command.commandgroup, 112
wpilib.command.conditionalcommand, 114
wpilib.command.instantcommand, 114
wpilib.command.pidcommand, 115
wpilib.command.pidsubsystem, 116
wpilib.command.printcommand, 118
wpilib.command.scheduler, 118
wpilib.command.startcommand, 119
wpilib.command.subsystem, 119
wpilib.command.timedcommand, 120
wpilib.command.waitcommand, 120
wpilib.command.waitforchildren, 121
wpilib.command.waituntilcommand, 121
wpilib.compressor, 22

wpilib.controllerpower, 23
wpilib.counter, 25
wpilib.digitalglitchfilter, 30
wpilib.digitalinput, 31
wpilib.digitaloutput, 31
wpilib.digitalsource, 33
wpilib.doublesolenoid, 33
wpilib.driverstation, 34
wpilib.encoder, 38
wpilib.filter, 42
wpilib.geartooth, 42
wpilib.gyrobase, 43
wpilib.i2c, 43
wpilib.interfaces, 121
wpilib.interfaces.accelerometer, 122
wpilib.interfaces.controller, 122
wpilib.interfaces.counterbase, 123
wpilib.interfaces.gamepadbase, 46
wpilib.interfaces.generichid, 46
wpilib.interfaces.gyro, 126
wpilib.interfaces.namedsendable, 126
wpilib.interfaces.pidinterface, 126
wpilib.interfaces.pidoutput, 127
wpilib.interfaces.pidsource, 127
wpilib.interfaces.potentiometer, 128
wpilib.interfaces.speedcontroller, 128
wpilib.interruptablesensorbase, 48
wpilib.iterativerobot, 49
wpilib.jaguar, 52
wpilib.joystick, 52
wpilib.lineardigitalfilter, 56
wpilib.livewindow, 58
wpilib.livewindowsendable, 60
wpilib.motorsafety, 60
wpilib.pidcontroller, 61
wpilib.powerdistributionpanel, 65
wpilib.preferences, 66
wpilib.pwm, 68
wpilib.pwmspeedcontroller, 71
wpilib.relay, 72

131

RobotPy WPILib Documentation, Release master

wpilib.resource, 73
wpilib.robotbase, 74
wpilib.robotdrive, 75
wpilib.robotstate, 79
wpilib.safepwm, 80
wpilib.samplerobot, 80
wpilib.sd540, 82
wpilib.sendable, 82
wpilib.sendablechooser, 82
wpilib.sensorbase, 83
wpilib.servo, 85
wpilib.smartdashboard, 86
wpilib.solenoid, 92
wpilib.solenoidbase, 93
wpilib.spark, 94
wpilib.spi, 94
wpilib.talon, 97
wpilib.talonsrx, 98
wpilib.timer, 98
wpilib.ultrasonic, 100
wpilib.utility, 102
wpilib.victor, 103
wpilib.victorsp, 103
wpilib.xboxcontroller, 104

132 Python Module Index

Index

A
AbsoluteTolerance_onTarget()

(wpilib.pidcontroller.PIDController method),
62

Accelerometer (class in wpilib.interfaces.accelerometer),
122

Accelerometer.Range (class in
wpilib.interfaces.accelerometer), 122

add() (wpilib.command.scheduler.Scheduler method),
118

add() (wpilib.digitalglitchfilter.DigitalGlitchFilter
method), 30

addActuator() (wpilib.livewindow.LiveWindow static
method), 58

addActuatorChannel() (wpilib.livewindow.LiveWindow
static method), 58

addActuatorModuleChannel()
(wpilib.livewindow.LiveWindow static
method), 59

addButton() (wpilib.command.scheduler.Scheduler
method), 118

addDefault() (wpilib.sendablechooser.SendableChooser
method), 83

addObject() (wpilib.sendablechooser.SendableChooser
method), 83

addParallel() (wpilib.command.commandgroup.CommandGroup
method), 113

addressOnly() (wpilib.i2c.I2C method), 44
addSensor() (wpilib.livewindow.LiveWindow static

method), 59
addSensorChannel() (wpilib.livewindow.LiveWindow

static method), 59
addSequential() (wpilib.command.commandgroup.CommandGroup

method), 113
ADXL345_I2C (class in wpilib.adxl345_i2c), 5
ADXL345_I2C.Axes (class in wpilib.adxl345_i2c), 5
ADXL345_I2C.Range (class in wpilib.adxl345_i2c), 6
ADXL345_SPI (class in wpilib.adxl345_spi), 7
ADXL345_SPI.Axes (class in wpilib.adxl345_spi), 7

ADXL345_SPI.Range (class in wpilib.adxl345_spi), 7
ADXL362 (class in wpilib.adxl362), 8
ADXL362.Axes (class in wpilib.adxl362), 8
ADXL362.Range (class in wpilib.adxl362), 8
ADXRS450_Gyro (class in wpilib.adxrs450_gyro), 10
allocate() (wpilib.resource.Resource method), 73
allocatedDownSource (wpilib.counter.Counter attribute),

26
allocatedUpSource (wpilib.counter.Counter attribute), 26
allocateInterrupts() (wpilib.interruptablesensorbase.InterruptableSensorBase

method), 48
AnalogAccelerometer (class in

wpilib.analogaccelerometer), 11
AnalogAccelerometer.PIDSourceType (class in

wpilib.analogaccelerometer), 11
AnalogGyro (class in wpilib.analoggyro), 12
AnalogGyro.PIDSourceType (class in

wpilib.analoggyro), 12
AnalogInput (class in wpilib.analoginput), 13
AnalogInput.PIDSourceType (class in

wpilib.analoginput), 13
AnalogOutput (class in wpilib.analogoutput), 16
AnalogPotentiometer (class in

wpilib.analogpotentiometer), 17
AnalogPotentiometer.PIDSourceType (class in

wpilib.analogpotentiometer), 17
AnalogTrigger (class in wpilib.analogtrigger), 18
AnalogTrigger.AnalogTriggerType (class in

wpilib.analogtrigger), 18
AnalogTriggerOutput (class in

wpilib.analogtriggeroutput), 19
AnalogTriggerOutput.AnalogTriggerType (class in

wpilib.analogtriggeroutput), 19
arcadeDrive() (wpilib.robotdrive.RobotDrive method), 76
automaticEnabled (wpilib.ultrasonic.Ultrasonic attribute),

100
autonomous() (wpilib.samplerobot.SampleRobot

method), 80
autonomousInit() (wpilib.iterativerobot.IterativeRobot

method), 50

133

RobotPy WPILib Documentation, Release master

autonomousPeriodic() (wpilib.iterativerobot.IterativeRobot
method), 50

B
Blue (wpilib.driverstation.DriverStation.Alliance at-

tribute), 35
BRANCH_CHILD (wpilib.command.commandgroup.CommandGroup.Entry

attribute), 113
BRANCH_PEER (wpilib.command.commandgroup.CommandGroup.Entry

attribute), 113
BuiltInAccelerometer (class in

wpilib.builtinaccelerometer), 20
BuiltInAccelerometer.Range (class in

wpilib.builtinaccelerometer), 20
Button (class in wpilib.buttons.button), 106

C
calculateFeedForward() (wpilib.pidcontroller.PIDController

method), 62
calibrate() (wpilib.adxrs450_gyro.ADXRS450_Gyro

method), 10
calibrate() (wpilib.analoggyro.AnalogGyro method), 12
calibrate() (wpilib.gyrobase.GyroBase method), 43
calibrate() (wpilib.interfaces.gyro.Gyro method), 126
CameraServer (class in wpilib.cameraserver), 21
cancel() (wpilib.command.command.Command method),

109
cancelConflicts() (wpilib.command.commandgroup.CommandGroup

method), 113
cancelInterrupts() (wpilib.interruptablesensorbase.InterruptableSensorBase

method), 48
cancelWhenActive() (wpilib.buttons.trigger.Trigger

method), 107
cancelWhenPressed() (wpilib.buttons.button.Button

method), 106
CANJaguar (class in wpilib.canjaguar), 21
CANTalon (class in wpilib.cantalon), 21
channels (wpilib.analoginput.AnalogInput attribute), 14
channels (wpilib.analogoutput.AnalogOutput attribute),

16
channels (wpilib.digitalsource.DigitalSource attribute),

33
check() (wpilib.motorsafety.MotorSafety method), 60
checkAnalogInputChannel()

(wpilib.sensorbase.SensorBase static method),
83

checkAnalogOutputChannel()
(wpilib.sensorbase.SensorBase static method),
83

checkDigitalChannel() (wpilib.sensorbase.SensorBase
static method), 83

checkMotors() (wpilib.motorsafety.MotorSafety static
method), 60

checkPDPChannel() (wpilib.sensorbase.SensorBase
static method), 83

checkPDPModule() (wpilib.sensorbase.SensorBase static
method), 84

checkPWMChannel() (wpilib.sensorbase.SensorBase
static method), 84

checkRelayChannel() (wpilib.sensorbase.SensorBase
static method), 84

checkSolenoidChannel() (wpilib.sensorbase.SensorBase
static method), 84

checkSolenoidModule() (wpilib.sensorbase.SensorBase
static method), 84

clearAllPCMStickyFaults()
(wpilib.compressor.Compressor method),
22

clearAllPCMStickyFaults()
(wpilib.solenoidbase.SolenoidBase method),
93

clearDownSource() (wpilib.counter.Counter method), 26
clearFlags() (wpilib.smartdashboard.SmartDashboard

class method), 86
clearPersistent() (wpilib.smartdashboard.SmartDashboard

class method), 86
clearRequirements() (wpilib.command.command.Command

method), 110
clearStickyFaults() (wpilib.powerdistributionpanel.PowerDistributionPanel

method), 65
clearUpSource() (wpilib.counter.Counter method), 26
Command (class in wpilib.command.command), 109
CommandGroup (class in

wpilib.command.commandgroup), 112
CommandGroup.Entry (class in

wpilib.command.commandgroup), 113
components (wpilib.livewindow.LiveWindow attribute),

59
Compressor (class in wpilib.compressor), 22
condition() (wpilib.command.conditionalcommand.ConditionalCommand

method), 114
ConditionalCommand (class in

wpilib.command.conditionalcommand), 114
confirmCommand() (wpilib.command.subsystem.Subsystem

method), 120
containsKey() (wpilib.preferences.Preferences method),

66
containsKey() (wpilib.smartdashboard.SmartDashboard

class method), 86
Controller (class in wpilib.interfaces.controller), 122
ControllerPower (class in wpilib.controllerpower), 23
Counter (class in wpilib.counter), 25
counter (wpilib.counter.Counter attribute), 26
Counter.EncodingType (class in wpilib.counter), 26
Counter.Mode (class in wpilib.counter), 26
Counter.PIDSourceType (class in wpilib.counter), 26
CounterBase (class in wpilib.interfaces.counterbase), 123

134 Index

RobotPy WPILib Documentation, Release master

CounterBase.EncodingType (class in
wpilib.interfaces.counterbase), 123

createOutput() (wpilib.analogtrigger.AnalogTrigger
method), 18

D
DEFAULT (wpilib.sendablechooser.SendableChooser at-

tribute), 83
DEFAULT_SAFETY_EXPIRATION

(wpilib.motorsafety.MotorSafety attribute),
60

defaultSolenoidModule (wpilib.sensorbase.SensorBase
attribute), 84

delay() (wpilib.timer.Timer static method), 98
delete() (wpilib.smartdashboard.SmartDashboard class

method), 86
devices (wpilib.spi.SPI attribute), 95
DigitalGlitchFilter (class in wpilib.digitalglitchfilter), 30
DigitalInput (class in wpilib.digitalinput), 31
DigitalOutput (class in wpilib.digitaloutput), 31
DigitalSource (class in wpilib.digitalsource), 33
disable() (wpilib.command.pidsubsystem.PIDSubsystem

method), 116
disable() (wpilib.command.scheduler.Scheduler method),

118
disable() (wpilib.interfaces.controller.Controller method),

122
disable() (wpilib.interfaces.pidinterface.PIDInterface

method), 126
disable() (wpilib.interfaces.speedcontroller.SpeedController

method), 128
disable() (wpilib.pidcontroller.PIDController method), 62
disable() (wpilib.safepwm.SafePWM method), 80
disabled() (wpilib.samplerobot.SampleRobot method), 80
disabledInit() (wpilib.iterativerobot.IterativeRobot

method), 50
disabledPeriodic() (wpilib.iterativerobot.IterativeRobot

method), 50
disableInterrupts() (wpilib.interruptablesensorbase.InterruptableSensorBase

method), 48
disablePWM() (wpilib.digitaloutput.DigitalOutput

method), 32
doesRequire() (wpilib.command.command.Command

method), 110
DoubleSolenoid (class in wpilib.doublesolenoid), 33
DoubleSolenoid.Value (class in wpilib.doublesolenoid),

34
drive() (wpilib.robotdrive.RobotDrive method), 76
DriverStation (class in wpilib.driverstation), 34
DriverStation.Alliance (class in wpilib.driverstation), 35

E
enable() (wpilib.command.pidsubsystem.PIDSubsystem

method), 116

enable() (wpilib.command.scheduler.Scheduler method),
118

enable() (wpilib.interfaces.controller.Controller method),
122

enable() (wpilib.interfaces.pidinterface.PIDInterface
method), 127

enable() (wpilib.pidcontroller.PIDController method), 62
enabled() (wpilib.compressor.Compressor method), 22
enableDeadbandElimination() (wpilib.pwm.PWM

method), 69
enableDirectionSensing() (wpilib.geartooth.GearTooth

method), 43
enableInterrupts() (wpilib.interruptablesensorbase.InterruptableSensorBase

method), 48
enablePWM() (wpilib.digitaloutput.DigitalOutput

method), 32
Encoder (class in wpilib.encoder), 38
encoder (wpilib.encoder.Encoder attribute), 40
Encoder.EncodingType (class in wpilib.encoder), 39
Encoder.IndexingType (class in wpilib.encoder), 40
Encoder.PIDSourceType (class in wpilib.encoder), 40
end() (wpilib.command.command.Command method),

110
end() (wpilib.command.commandgroup.CommandGroup

method), 113
execute() (wpilib.command.command.Command

method), 110
execute() (wpilib.command.commandgroup.CommandGroup

method), 113

F
feed() (wpilib.motorsafety.MotorSafety method), 60
Filter (class in wpilib.filter), 42
filterAllocated (wpilib.digitalglitchfilter.DigitalGlitchFilter

attribute), 30
firstTime (wpilib.livewindow.LiveWindow attribute), 59
flush_outputs() (wpilib.joystick.Joystick method), 52
forwardHandle (wpilib.relay.Relay attribute), 72
free() (wpilib.adxl345_i2c.ADXL345_I2C method), 6
free() (wpilib.adxl345_spi.ADXL345_SPI method), 7
free() (wpilib.adxl362.ADXL362 method), 9
free() (wpilib.adxrs450_gyro.ADXRS450_Gyro method),

10
free() (wpilib.analogaccelerometer.AnalogAccelerometer

method), 11
free() (wpilib.analoggyro.AnalogGyro method), 12
free() (wpilib.analoginput.AnalogInput method), 14
free() (wpilib.analogoutput.AnalogOutput method), 16
free() (wpilib.analogpotentiometer.AnalogPotentiometer

method), 17
free() (wpilib.analogtrigger.AnalogTrigger method), 18
free() (wpilib.analogtriggeroutput.AnalogTriggerOutput

method), 20

Index 135

RobotPy WPILib Documentation, Release master

free() (wpilib.builtinaccelerometer.BuiltInAccelerometer
method), 20

free() (wpilib.counter.Counter method), 26
free() (wpilib.digitalglitchfilter.DigitalGlitchFilter

method), 30
free() (wpilib.digitalinput.DigitalInput method), 31
free() (wpilib.digitaloutput.DigitalOutput method), 32
free() (wpilib.digitalsource.DigitalSource method), 33
free() (wpilib.doublesolenoid.DoubleSolenoid method),

34
free() (wpilib.encoder.Encoder method), 40
free() (wpilib.geartooth.GearTooth method), 43
free() (wpilib.i2c.I2C method), 44
free() (wpilib.interfaces.gyro.Gyro method), 126
free() (wpilib.pidcontroller.PIDController method), 62
free() (wpilib.pwm.PWM method), 69
free() (wpilib.pwmspeedcontroller.PWMSpeedController

method), 71
free() (wpilib.relay.Relay method), 72
free() (wpilib.resource.Resource method), 74
free() (wpilib.robotbase.RobotBase method), 74
free() (wpilib.robotdrive.RobotDrive method), 77
free() (wpilib.sensorbase.SensorBase method), 84
free() (wpilib.servo.Servo method), 85
free() (wpilib.solenoid.Solenoid method), 93
free() (wpilib.spi.SPI method), 95
free() (wpilib.ultrasonic.Ultrasonic method), 100
freeAccumulator() (wpilib.spi.SPI method), 95
from_obj_or_callable() (wpilib.interfaces.pidsource.PIDSource

static method), 127

G
GamepadBase (class in wpilib.interfaces.gamepadbase),

46
GearTooth (class in wpilib.geartooth), 42
GenericHID (class in wpilib.interfaces.generichid), 46,

123
GenericHID.Hand (class in wpilib.interfaces.generichid),

47, 124
GenericHID.HIDType (class in

wpilib.interfaces.generichid), 46, 123
GenericHID.RumbleType (class in

wpilib.interfaces.generichid), 47, 124
get() (wpilib.analogpotentiometer.AnalogPotentiometer

method), 17
get() (wpilib.analogtriggeroutput.AnalogTriggerOutput

method), 20
get() (wpilib.buttons.internalbutton.InternalButton

method), 107
get() (wpilib.buttons.joystickbutton.JoystickButton

method), 107
get() (wpilib.buttons.networkbutton.NetworkButton

method), 107
get() (wpilib.buttons.trigger.Trigger method), 108

get() (wpilib.counter.Counter method), 26
get() (wpilib.digitalinput.DigitalInput method), 31
get() (wpilib.digitaloutput.DigitalOutput method), 32
get() (wpilib.doublesolenoid.DoubleSolenoid method),

34
get() (wpilib.encoder.Encoder method), 40
get() (wpilib.filter.Filter method), 42
get() (wpilib.interfaces.counterbase.CounterBase

method), 123
get() (wpilib.interfaces.potentiometer.Potentiometer

method), 128
get() (wpilib.interfaces.speedcontroller.SpeedController

method), 128
get() (wpilib.lineardigitalfilter.LinearDigitalFilter

method), 57
get() (wpilib.pidcontroller.PIDController method), 62
get() (wpilib.pwmspeedcontroller.PWMSpeedController

method), 71
get() (wpilib.relay.Relay method), 72
get() (wpilib.servo.Servo method), 85
get() (wpilib.solenoid.Solenoid method), 93
get() (wpilib.timer.Timer method), 98
getAButton() (wpilib.xboxcontroller.XboxController

method), 104
getAcceleration() (wpilib.adxl345_i2c.ADXL345_I2C

method), 6
getAcceleration() (wpilib.adxl345_spi.ADXL345_SPI

method), 7
getAcceleration() (wpilib.adxl362.ADXL362 method), 9
getAcceleration() (wpilib.analogaccelerometer.AnalogAccelerometer

method), 11
getAccelerations() (wpilib.adxl345_i2c.ADXL345_I2C

method), 6
getAccelerations() (wpilib.adxl345_spi.ADXL345_SPI

method), 7
getAccelerations() (wpilib.adxl362.ADXL362 method), 9
getAccumulatorAverage() (wpilib.spi.SPI method), 95
getAccumulatorCount() (wpilib.analoginput.AnalogInput

method), 14
getAccumulatorCount() (wpilib.spi.SPI method), 95
getAccumulatorLastValue() (wpilib.spi.SPI method), 95
getAccumulatorOutput() (wpilib.analoginput.AnalogInput

method), 14
getAccumulatorOutput() (wpilib.spi.SPI method), 95
getAccumulatorValue() (wpilib.analoginput.AnalogInput

method), 14
getAccumulatorValue() (wpilib.spi.SPI method), 95
getAll() (wpilib.solenoidbase.SolenoidBase method), 93
getAlliance() (wpilib.driverstation.DriverStation

method), 35
getAnalogTriggerTypeForRouting()

(wpilib.analogtriggeroutput.AnalogTriggerOutput
method), 20

getAnalogTriggerTypeForRouting()

136 Index

RobotPy WPILib Documentation, Release master

(wpilib.digitalinput.DigitalInput method),
31

getAnalogTriggerTypeForRouting()
(wpilib.digitaloutput.DigitalOutput method),
32

getAnalogTriggerTypeForRouting()
(wpilib.interruptablesensorbase.InterruptableSensorBase
method), 49

getAngle() (wpilib.adxrs450_gyro.ADXRS450_Gyro
method), 10

getAngle() (wpilib.analoggyro.AnalogGyro method), 12
getAngle() (wpilib.gyrobase.GyroBase method), 43
getAngle() (wpilib.interfaces.gyro.Gyro method), 126
getAngle() (wpilib.servo.Servo method), 85
getAverageBits() (wpilib.analoginput.AnalogInput

method), 14
getAverageValue() (wpilib.analoginput.AnalogInput

method), 14
getAverageVoltage() (wpilib.analoginput.AnalogInput

method), 14
getAvgError() (wpilib.pidcontroller.PIDController

method), 62
getAxis() (wpilib.joystick.Joystick method), 53
getAxisChannel() (wpilib.joystick.Joystick method), 53
getAxisCount() (wpilib.joystick.Joystick method), 53
getAxisType() (wpilib.joystick.Joystick method), 53
getBackButton() (wpilib.xboxcontroller.XboxController

method), 104
getBatteryVoltage() (wpilib.driverstation.DriverStation

method), 35
getBButton() (wpilib.xboxcontroller.XboxController

method), 104
getBoolean() (wpilib.preferences.Preferences method),

66
getBoolean() (wpilib.smartdashboard.SmartDashboard

class method), 86
getBooleanArray() (wpilib.smartdashboard.SmartDashboard

class method), 87
getBumper() (wpilib.interfaces.gamepadbase.GamepadBase

method), 46
getBumper() (wpilib.joystick.Joystick method), 53
getBumper() (wpilib.xboxcontroller.XboxController

method), 104
getButton() (wpilib.joystick.Joystick method), 53
getButtonCount() (wpilib.joystick.Joystick method), 53
getCenter() (wpilib.analoggyro.AnalogGyro method), 13
getChannel() (wpilib.analoginput.AnalogInput method),

14
getChannel() (wpilib.analogoutput.AnalogOutput

method), 16
getChannel() (wpilib.analogtriggeroutput.AnalogTriggerOutput

method), 20
getChannel() (wpilib.digitalinput.DigitalInput method),

31

getChannel() (wpilib.digitaloutput.DigitalOutput
method), 32

getChannel() (wpilib.digitalsource.DigitalSource
method), 33

getChannel() (wpilib.pwm.PWM method), 69
getChannel() (wpilib.relay.Relay method), 73
getClosedLoopControl() (wpilib.compressor.Compressor

method), 22
getCompressorCurrent() (wpilib.compressor.Compressor

method), 22
getCompressorCurrentTooHighFault()

(wpilib.compressor.Compressor method),
22

getCompressorCurrentTooHighStickyFault()
(wpilib.compressor.Compressor method),
22

getCompressorNotConnectedFault()
(wpilib.compressor.Compressor method),
22

getCompressorNotConnectedStickyFault()
(wpilib.compressor.Compressor method),
22

getCompressorShortedFault()
(wpilib.compressor.Compressor method),
23

getCompressorShortedStickyFault()
(wpilib.compressor.Compressor method),
23

getContinuousError() (wpilib.pidcontroller.PIDController
method), 62

getCurrent() (wpilib.powerdistributionpanel.PowerDistributionPanel
method), 65

getCurrent3V3() (wpilib.controllerpower.ControllerPower
static method), 23

getCurrent5V() (wpilib.controllerpower.ControllerPower
static method), 23

getCurrent6V() (wpilib.controllerpower.ControllerPower
static method), 23

getCurrentCommand() (wpilib.command.subsystem.Subsystem
method), 120

getD() (wpilib.interfaces.pidinterface.PIDInterface
method), 127

getD() (wpilib.pidcontroller.PIDController method), 62
getData() (wpilib.smartdashboard.SmartDashboard class

method), 87
getDefaultCommand() (wpilib.command.subsystem.Subsystem

method), 120
getDefaultSolenoidModule()

(wpilib.sensorbase.SensorBase static method),
84

getDeltaSetpoint() (wpilib.pidcontroller.PIDController
method), 62

getDescription() (wpilib.relay.Relay method), 73
getDescription() (wpilib.robotdrive.RobotDrive method),

Index 137

RobotPy WPILib Documentation, Release master

77
getDescription() (wpilib.safepwm.SafePWM method), 80
getDirection() (wpilib.counter.Counter method), 26
getDirection() (wpilib.encoder.Encoder method), 40
getDirection() (wpilib.interfaces.counterbase.CounterBase

method), 123
getDirectionDegrees() (wpilib.joystick.Joystick method),

53
getDirectionRadians() (wpilib.joystick.Joystick method),

53
getDistance() (wpilib.counter.Counter method), 26
getDistance() (wpilib.encoder.Encoder method), 40
getDistanceUnits() (wpilib.ultrasonic.Ultrasonic method),

100
getDouble() (wpilib.smartdashboard.SmartDashboard

class method), 87
getEnabled3V3() (wpilib.controllerpower.ControllerPower

static method), 23
getEnabled5V() (wpilib.controllerpower.ControllerPower

static method), 24
getEnabled6V() (wpilib.controllerpower.ControllerPower

static method), 24
getEncodingScale() (wpilib.encoder.Encoder method), 40
getError() (wpilib.interfaces.pidinterface.PIDInterface

method), 127
getError() (wpilib.pidcontroller.PIDController method),

63
getExpiration() (wpilib.motorsafety.MotorSafety

method), 60
getF() (wpilib.pidcontroller.PIDController method), 63
getFaultCount3V3() (wpilib.controllerpower.ControllerPower

static method), 24
getFaultCount5V() (wpilib.controllerpower.ControllerPower

static method), 24
getFaultCount6V() (wpilib.controllerpower.ControllerPower

static method), 24
getFlags() (wpilib.smartdashboard.SmartDashboard class

method), 87
getFloat() (wpilib.preferences.Preferences method), 66
getFPGAIndex() (wpilib.counter.Counter method), 27
getFPGAIndex() (wpilib.encoder.Encoder method), 40
getFPGARevision() (wpilib.utility.Utility static method),

102
getFPGATime() (wpilib.utility.Utility static method), 102
getFPGATimestamp() (wpilib.timer.Timer static method),

99
getFPGAVersion() (wpilib.utility.Utility static method),

102
getGlobalSampleRate() (wpilib.analoginput.AnalogInput

static method), 14
getGroup() (wpilib.command.command.Command

method), 110
getI() (wpilib.interfaces.pidinterface.PIDInterface

method), 127

getI() (wpilib.pidcontroller.PIDController method), 63
getIndex() (wpilib.analogtrigger.AnalogTrigger method),

18
getInputCurrent() (wpilib.controllerpower.ControllerPower

static method), 24
getInputVoltage() (wpilib.controllerpower.ControllerPower

static method), 24
getInstance() (wpilib.command.scheduler.Scheduler

static method), 118
getInstance() (wpilib.driverstation.DriverStation class

method), 35
getInstance() (wpilib.preferences.Preferences static

method), 66
getInt() (wpilib.preferences.Preferences method), 66
getInt() (wpilib.smartdashboard.SmartDashboard class

method), 87
getInverted() (wpilib.interfaces.speedcontroller.SpeedController

method), 128
getInverted() (wpilib.pwmspeedcontroller.PWMSpeedController

method), 71
getInWindow() (wpilib.analogtrigger.AnalogTrigger

method), 18
getIsXbox() (wpilib.joystick.Joystick method), 54
getJoystickAxisType() (wpilib.driverstation.DriverStation

method), 35
getJoystickIsXbox() (wpilib.driverstation.DriverStation

method), 35
getJoystickName() (wpilib.driverstation.DriverStation

method), 35
getJoystickType() (wpilib.driverstation.DriverStation

method), 36
getKeys() (wpilib.preferences.Preferences method), 67
getKeys() (wpilib.smartdashboard.SmartDashboard class

method), 88
getLocation() (wpilib.driverstation.DriverStation

method), 36
getLSBWeight() (wpilib.analoginput.AnalogInput

method), 15
getMagnitude() (wpilib.joystick.Joystick method), 54
getMatchTime() (wpilib.driverstation.DriverStation

method), 36
getMatchTime() (wpilib.timer.Timer static method), 99
getMsClock() (wpilib.timer.Timer method), 99
getName() (wpilib.command.command.Command

method), 110
getName() (wpilib.command.scheduler.Scheduler

method), 118
getName() (wpilib.command.subsystem.Subsystem

method), 120
getName() (wpilib.interfaces.gamepadbase.GamepadBase

method), 46
getName() (wpilib.interfaces.generichid.GenericHID

method), 47, 124
getName() (wpilib.interfaces.namedsendable.NamedSendable

138 Index

RobotPy WPILib Documentation, Release master

method), 126
getName() (wpilib.joystick.Joystick method), 54
getName() (wpilib.xboxcontroller.XboxController

method), 104
getNumber() (wpilib.smartdashboard.SmartDashboard

class method), 88
getNumberArray() (wpilib.smartdashboard.SmartDashboard

class method), 88
getNumMotors() (wpilib.robotdrive.RobotDrive method),

77
getOffset() (wpilib.analoggyro.AnalogGyro method), 13
getOffset() (wpilib.analoginput.AnalogInput method), 15
getOversampleBits() (wpilib.analoginput.AnalogInput

method), 15
getP() (wpilib.interfaces.pidinterface.PIDInterface

method), 127
getP() (wpilib.pidcontroller.PIDController method), 63
getPCMSolenoidBlackList()

(wpilib.solenoidbase.SolenoidBase method),
93

getPCMSolenoidVoltageFault()
(wpilib.solenoidbase.SolenoidBase method),
93

getPCMSolenoidVoltageStickyFault()
(wpilib.solenoidbase.SolenoidBase method),
94

getPeriod() (wpilib.counter.Counter method), 27
getPeriod() (wpilib.encoder.Encoder method), 40
getPeriod() (wpilib.interfaces.counterbase.CounterBase

method), 123
getPeriodCycles() (wpilib.digitalglitchfilter.DigitalGlitchFilter

method), 30
getPeriodNanoSeconds()

(wpilib.digitalglitchfilter.DigitalGlitchFilter
method), 30

getPIDController() (wpilib.command.pidcommand.PIDCommand
method), 115

getPIDController() (wpilib.command.pidsubsystem.PIDSubsystem
method), 116

getPIDSourceType() (wpilib.analogaccelerometer.AnalogAccelerometer
method), 11

getPIDSourceType() (wpilib.analoginput.AnalogInput
method), 15

getPIDSourceType() (wpilib.analogpotentiometer.AnalogPotentiometer
method), 17

getPIDSourceType() (wpilib.counter.Counter method), 27
getPIDSourceType() (wpilib.encoder.Encoder method),

40
getPIDSourceType() (wpilib.filter.Filter method), 42
getPIDSourceType() (wpilib.gyrobase.GyroBase

method), 43
getPIDSourceType() (wpilib.interfaces.pidsource.PIDSource

method), 127
getPIDSourceType() (wpilib.pidcontroller.PIDController

method), 63
getPIDSourceType() (wpilib.ultrasonic.Ultrasonic

method), 100
getPort() (wpilib.interfaces.generichid.GenericHID

method), 47, 125
getPortHandleForRouting()

(wpilib.analogtriggeroutput.AnalogTriggerOutput
method), 20

getPortHandleForRouting()
(wpilib.digitalinput.DigitalInput method),
31

getPortHandleForRouting()
(wpilib.digitaloutput.DigitalOutput method),
32

getPortHandleForRouting()
(wpilib.interruptablesensorbase.InterruptableSensorBase
method), 49

getPosition() (wpilib.command.pidcommand.PIDCommand
method), 115

getPosition() (wpilib.command.pidsubsystem.PIDSubsystem
method), 116

getPosition() (wpilib.pwm.PWM method), 69
getPOV() (wpilib.interfaces.gamepadbase.GamepadBase

method), 46
getPOV() (wpilib.interfaces.generichid.GenericHID

method), 47, 124
getPOV() (wpilib.joystick.Joystick method), 54
getPOV() (wpilib.xboxcontroller.XboxController

method), 104
getPOVCount() (wpilib.interfaces.gamepadbase.GamepadBase

method), 46
getPOVCount() (wpilib.interfaces.generichid.GenericHID

method), 47, 125
getPOVCount() (wpilib.joystick.Joystick method), 54
getPOVCount() (wpilib.xboxcontroller.XboxController

method), 104
getPressureSwitchValue()

(wpilib.compressor.Compressor method),
23

getRangeInches() (wpilib.ultrasonic.Ultrasonic method),
100

getRangeMM() (wpilib.ultrasonic.Ultrasonic method),
100

getRate() (wpilib.adxrs450_gyro.ADXRS450_Gyro
method), 10

getRate() (wpilib.analoggyro.AnalogGyro method), 13
getRate() (wpilib.counter.Counter method), 27
getRate() (wpilib.encoder.Encoder method), 40
getRate() (wpilib.gyrobase.GyroBase method), 43
getRate() (wpilib.interfaces.gyro.Gyro method), 126
getRaw() (wpilib.encoder.Encoder method), 41
getRaw() (wpilib.pwm.PWM method), 69
getRaw() (wpilib.smartdashboard.SmartDashboard class

method), 88

Index 139

RobotPy WPILib Documentation, Release master

getRawAxis() (wpilib.interfaces.gamepadbase.GamepadBase
method), 46

getRawAxis() (wpilib.interfaces.generichid.GenericHID
method), 47, 125

getRawAxis() (wpilib.joystick.Joystick method), 54
getRawAxis() (wpilib.xboxcontroller.XboxController

method), 104
getRawBounds() (wpilib.pwm.PWM method), 69
getRawButton() (wpilib.interfaces.gamepadbase.GamepadBase

method), 46
getRawButton() (wpilib.interfaces.generichid.GenericHID

method), 47, 125
getRawButton() (wpilib.joystick.Joystick method), 54
getRawButton() (wpilib.xboxcontroller.XboxController

method), 104
getRequirements() (wpilib.command.command.Command

method), 110
getSamplesToAverage() (wpilib.counter.Counter

method), 27
getSamplesToAverage() (wpilib.encoder.Encoder

method), 41
getSelected() (wpilib.sendablechooser.SendableChooser

method), 83
getServoAngleRange() (wpilib.servo.Servo method), 85
getSetpoint() (wpilib.command.pidcommand.PIDCommand

method), 115
getSetpoint() (wpilib.command.pidsubsystem.PIDSubsystem

method), 116
getSetpoint() (wpilib.interfaces.pidinterface.PIDInterface

method), 127
getSetpoint() (wpilib.pidcontroller.PIDController

method), 63
getSpeed() (wpilib.pwm.PWM method), 69
getStartButton() (wpilib.xboxcontroller.XboxController

method), 104
getStickAxis() (wpilib.driverstation.DriverStation

method), 36
getStickAxisCount() (wpilib.driverstation.DriverStation

method), 36
getStickButton() (wpilib.driverstation.DriverStation

method), 36
getStickButton() (wpilib.interfaces.gamepadbase.GamepadBase

method), 46
getStickButton() (wpilib.xboxcontroller.XboxController

method), 105
getStickButtonCount() (wpilib.driverstation.DriverStation

method), 36
getStickButtons() (wpilib.driverstation.DriverStation

method), 37
getStickPOV() (wpilib.driverstation.DriverStation

method), 37
getStickPOVCount() (wpilib.driverstation.DriverStation

method), 37
getStopped() (wpilib.counter.Counter method), 27

getStopped() (wpilib.encoder.Encoder method), 41
getStopped() (wpilib.interfaces.counterbase.CounterBase

method), 123
getString() (wpilib.preferences.Preferences method), 67
getString() (wpilib.smartdashboard.SmartDashboard

class method), 88
getStringArray() (wpilib.smartdashboard.SmartDashboard

class method), 89
getTemperature() (wpilib.powerdistributionpanel.PowerDistributionPanel

method), 65
getThrottle() (wpilib.joystick.Joystick method), 54
getTop() (wpilib.joystick.Joystick method), 54
getTotalCurrent() (wpilib.powerdistributionpanel.PowerDistributionPanel

method), 65
getTotalEnergy() (wpilib.powerdistributionpanel.PowerDistributionPanel

method), 65
getTotalPower() (wpilib.powerdistributionpanel.PowerDistributionPanel

method), 65
getTrigger() (wpilib.joystick.Joystick method), 55
getTriggerAxis() (wpilib.xboxcontroller.XboxController

method), 105
getTriggerState() (wpilib.analogtrigger.AnalogTrigger

method), 18
getTwist() (wpilib.joystick.Joystick method), 55
getType() (wpilib.command.scheduler.Scheduler

method), 118
getType() (wpilib.interfaces.gamepadbase.GamepadBase

method), 46
getType() (wpilib.interfaces.generichid.GenericHID

method), 47, 125
getType() (wpilib.joystick.Joystick method), 55
getType() (wpilib.xboxcontroller.XboxController

method), 105
getUserButton() (wpilib.utility.Utility static method), 102
getValue() (wpilib.analoginput.AnalogInput method), 15
getVoltage() (wpilib.analoginput.AnalogInput method),

15
getVoltage() (wpilib.analogoutput.AnalogOutput

method), 16
getVoltage() (wpilib.powerdistributionpanel.PowerDistributionPanel

method), 65
getVoltage3V3() (wpilib.controllerpower.ControllerPower

static method), 24
getVoltage5V() (wpilib.controllerpower.ControllerPower

static method), 24
getVoltage6V() (wpilib.controllerpower.ControllerPower

static method), 25
getX() (wpilib.adxl345_i2c.ADXL345_I2C method), 6
getX() (wpilib.adxl345_spi.ADXL345_SPI method), 7
getX() (wpilib.adxl362.ADXL362 method), 9
getX() (wpilib.builtinaccelerometer.BuiltInAccelerometer

method), 20
getX() (wpilib.interfaces.accelerometer.Accelerometer

method), 122

140 Index

RobotPy WPILib Documentation, Release master

getX() (wpilib.interfaces.generichid.GenericHID
method), 48, 125

getX() (wpilib.joystick.Joystick method), 55
getX() (wpilib.xboxcontroller.XboxController method),

105
getXButton() (wpilib.xboxcontroller.XboxController

method), 105
getY() (wpilib.adxl345_i2c.ADXL345_I2C method), 6
getY() (wpilib.adxl345_spi.ADXL345_SPI method), 7
getY() (wpilib.adxl362.ADXL362 method), 9
getY() (wpilib.builtinaccelerometer.BuiltInAccelerometer

method), 20
getY() (wpilib.interfaces.accelerometer.Accelerometer

method), 122
getY() (wpilib.interfaces.generichid.GenericHID

method), 48, 125
getY() (wpilib.joystick.Joystick method), 55
getY() (wpilib.xboxcontroller.XboxController method),

105
getYButton() (wpilib.xboxcontroller.XboxController

method), 105
getZ() (wpilib.adxl345_i2c.ADXL345_I2C method), 6
getZ() (wpilib.adxl345_spi.ADXL345_SPI method), 8
getZ() (wpilib.adxl362.ADXL362 method), 9
getZ() (wpilib.builtinaccelerometer.BuiltInAccelerometer

method), 20
getZ() (wpilib.interfaces.accelerometer.Accelerometer

method), 122
getZ() (wpilib.joystick.Joystick method), 55
grab() (wpilib.buttons.trigger.Trigger method), 108
Gyro (class in wpilib.interfaces.gyro), 126
GyroBase (class in wpilib.gyrobase), 43
GyroBase.PIDSourceType (class in wpilib.gyrobase), 43

H
handle (wpilib.digitalsource.DigitalSource attribute), 33
handle (wpilib.pwm.PWM attribute), 70
hasPeriodPassed() (wpilib.timer.Timer method), 99
helpers (wpilib.motorsafety.MotorSafety attribute), 60
helpers_lock (wpilib.motorsafety.MotorSafety attribute),

60
highPass() (wpilib.lineardigitalfilter.LinearDigitalFilter

static method), 57
holonomicDrive() (wpilib.robotdrive.RobotDrive

method), 77

I
I2C (class in wpilib.i2c), 43
I2C.Port (class in wpilib.i2c), 44
impl (wpilib.robotstate.RobotState attribute), 79
IN_SEQUENCE (wpilib.command.commandgroup.CommandGroup.Entry

attribute), 113
InAutonomous() (wpilib.driverstation.DriverStation

method), 35

InDisabled() (wpilib.driverstation.DriverStation method),
35

initAccumulator() (wpilib.analoginput.AnalogInput
method), 15

initAccumulator() (wpilib.spi.SPI method), 95
initDefaultCommand() (wpilib.command.subsystem.Subsystem

method), 120
initialize() (wpilib.command.command.Command

method), 110
initialize() (wpilib.command.commandgroup.CommandGroup

method), 113
initialize() (wpilib.command.printcommand.PrintCommand

method), 118
initialize() (wpilib.command.startcommand.StartCommand

method), 119
initializeHardwareConfiguration()

(wpilib.robotbase.RobotBase static method),
74

initializeLiveWindowComponents()
(wpilib.livewindow.LiveWindow static
method), 59

InOperatorControl() (wpilib.driverstation.DriverStation
method), 35

instances (wpilib.pidcontroller.PIDController attribute),
63

instances (wpilib.ultrasonic.Ultrasonic attribute), 101
InstantCommand (class in

wpilib.command.instantcommand), 114
InternalButton (class in wpilib.buttons.internalbutton),

107
interrupt (wpilib.interruptablesensorbase.InterruptableSensorBase

attribute), 49
InterruptableSensorBase (class in

wpilib.interruptablesensorbase), 48
interrupted() (wpilib.command.command.Command

method), 110
interrupted() (wpilib.command.commandgroup.CommandGroup

method), 113
interrupted() (wpilib.command.conditionalcommand.ConditionalCommand

method), 114
InTest() (wpilib.driverstation.DriverStation method), 35
Invalid (wpilib.driverstation.DriverStation.Alliance at-

tribute), 35
is_alive() (wpilib.cameraserver.CameraServer class

method), 21
isAccumulatorChannel() (wpilib.analoginput.AnalogInput

method), 15
isAlive() (wpilib.motorsafety.MotorSafety method), 61
isAnalogTrigger() (wpilib.digitalinput.DigitalInput

method), 31
isAnalogTrigger() (wpilib.digitaloutput.DigitalOutput

method), 32
isAnalogTrigger() (wpilib.digitalsource.DigitalSource

method), 33

Index 141

RobotPy WPILib Documentation, Release master

isAutomaticMode() (wpilib.ultrasonic.Ultrasonic static
method), 101

isAutonomous() (wpilib.driverstation.DriverStation
method), 37

isAutonomous() (wpilib.robotbase.RobotBase method),
74

isAutonomous() (wpilib.robotstate.RobotState static
method), 80

isAvgErrorValid() (wpilib.pidcontroller.PIDController
method), 63

isBlackListed() (wpilib.solenoid.Solenoid method), 93
isBrownedOut() (wpilib.driverstation.DriverStation

method), 37
isCanceled() (wpilib.command.command.Command

method), 110
isDisabled() (wpilib.driverstation.DriverStation method),

37
isDisabled() (wpilib.robotbase.RobotBase method), 74
isDisabled() (wpilib.robotstate.RobotState static method),

80
isDSAttached() (wpilib.driverstation.DriverStation

method), 37
isEnable() (wpilib.pidcontroller.PIDController method),

63
isEnabled() (wpilib.driverstation.DriverStation method),

37
isEnabled() (wpilib.interfaces.pidinterface.PIDInterface

method), 127
isEnabled() (wpilib.pidcontroller.PIDController method),

63
isEnabled() (wpilib.robotbase.RobotBase method), 74
isEnabled() (wpilib.robotstate.RobotState static method),

80
isEnabled() (wpilib.ultrasonic.Ultrasonic method), 101
isFinished() (wpilib.command.command.Command

method), 110
isFinished() (wpilib.command.commandgroup.CommandGroup

method), 113
isFinished() (wpilib.command.conditionalcommand.ConditionalCommand

method), 114
isFinished() (wpilib.command.instantcommand.InstantCommand

method), 114
isFinished() (wpilib.command.timedcommand.TimedCommand

method), 120
isFinished() (wpilib.command.waitforchildren.WaitForChildren

method), 121
isFinished() (wpilib.command.waituntilcommand.WaitUntilCommand

method), 121
isFMSAttached() (wpilib.driverstation.DriverStation

method), 37
isFwdSolenoidBlackListed()

(wpilib.doublesolenoid.DoubleSolenoid
method), 34

isInterruptible() (wpilib.command.command.Command

method), 111
isInterruptible() (wpilib.command.commandgroup.CommandGroup

method), 114
isNewControlData() (wpilib.driverstation.DriverStation

method), 37
isNewDataAvailable() (wpilib.robotbase.RobotBase

method), 74
isOperatorControl() (wpilib.driverstation.DriverStation

method), 37
isOperatorControl() (wpilib.robotbase.RobotBase

method), 75
isOperatorControl() (wpilib.robotstate.RobotState static

method), 80
isPersistent() (wpilib.smartdashboard.SmartDashboard

class method), 89
isPulsing() (wpilib.digitaloutput.DigitalOutput method),

32
isRangeValid() (wpilib.ultrasonic.Ultrasonic method),

101
isReal() (wpilib.robotbase.RobotBase static method), 75
isRevSolenoidBlackListed()

(wpilib.doublesolenoid.DoubleSolenoid
method), 34

isRunning() (wpilib.command.command.Command
method), 111

isSafetyEnabled() (wpilib.motorsafety.MotorSafety
method), 61

isSimulation() (wpilib.robotbase.RobotBase static
method), 75

isSysActive() (wpilib.driverstation.DriverStation
method), 38

isTest() (wpilib.driverstation.DriverStation method), 38
isTest() (wpilib.robotbase.RobotBase method), 75
isTest() (wpilib.robotstate.RobotState static method), 80
isTimedOut() (wpilib.command.command.Command

method), 111
isTimedOut() (wpilib.command.commandgroup.CommandGroup.Entry

method), 113
IterativeRobot (class in wpilib.iterativerobot), 49

J
Jaguar (class in wpilib.jaguar), 52
Joystick (class in wpilib.joystick), 52
Joystick.AxisType (class in wpilib.joystick), 52
Joystick.ButtonType (class in wpilib.joystick), 52
JoystickButton (class in wpilib.buttons.joystickbutton),

107

K
k16G (wpilib.adxl345_i2c.ADXL345_I2C.Range at-

tribute), 6
k16G (wpilib.adxl345_spi.ADXL345_SPI.Range at-

tribute), 7
k16G (wpilib.adxl362.ADXL362.Range attribute), 9

142 Index

RobotPy WPILib Documentation, Release master

k16G (wpilib.builtinaccelerometer.BuiltInAccelerometer.Range
attribute), 20

k16G (wpilib.interfaces.accelerometer.Accelerometer.Range
attribute), 122

k1X (wpilib.counter.Counter.EncodingType attribute), 26
k1X (wpilib.encoder.Encoder.EncodingType attribute),

39
k1X (wpilib.interfaces.counterbase.CounterBase.EncodingType

attribute), 123
k1X (wpilib.pwm.PWM.PeriodMultiplier attribute), 69
k2G (wpilib.adxl345_i2c.ADXL345_I2C.Range at-

tribute), 6
k2G (wpilib.adxl345_spi.ADXL345_SPI.Range at-

tribute), 7
k2G (wpilib.adxl362.ADXL362.Range attribute), 9
k2G (wpilib.builtinaccelerometer.BuiltInAccelerometer.Range

attribute), 20
k2G (wpilib.interfaces.accelerometer.Accelerometer.Range

attribute), 122
k2X (wpilib.counter.Counter.EncodingType attribute), 26
k2X (wpilib.encoder.Encoder.EncodingType attribute),

39
k2X (wpilib.interfaces.counterbase.CounterBase.EncodingType

attribute), 123
k2X (wpilib.pwm.PWM.PeriodMultiplier attribute), 69
k4G (wpilib.adxl345_i2c.ADXL345_I2C.Range at-

tribute), 6
k4G (wpilib.adxl345_spi.ADXL345_SPI.Range at-

tribute), 7
k4G (wpilib.adxl362.ADXL362.Range attribute), 9
k4G (wpilib.builtinaccelerometer.BuiltInAccelerometer.Range

attribute), 20
k4G (wpilib.interfaces.accelerometer.Accelerometer.Range

attribute), 122
k4X (wpilib.counter.Counter.EncodingType attribute), 26
k4X (wpilib.encoder.Encoder.EncodingType attribute),

39
k4X (wpilib.interfaces.counterbase.CounterBase.EncodingType

attribute), 123
k4X (wpilib.pwm.PWM.PeriodMultiplier attribute), 69
k8G (wpilib.adxl345_i2c.ADXL345_I2C.Range at-

tribute), 6
k8G (wpilib.adxl345_spi.ADXL345_SPI.Range at-

tribute), 7
k8G (wpilib.adxl362.ADXL362.Range attribute), 9
k8G (wpilib.builtinaccelerometer.BuiltInAccelerometer.Range

attribute), 20
k8G (wpilib.interfaces.accelerometer.Accelerometer.Range

attribute), 122
kAccumulatorChannels (wpilib.analoginput.AnalogInput

attribute), 15
kAccumulatorSlot (wpilib.analoginput.AnalogInput at-

tribute), 15
kAddress (wpilib.adxl345_i2c.ADXL345_I2C attribute),

6
kAddress_MultiByte (wpilib.adxl345_spi.ADXL345_SPI

attribute), 8
kAddress_Read (wpilib.adxl345_spi.ADXL345_SPI at-

tribute), 8
kAnalogInputChannels (wpilib.sensorbase.SensorBase

attribute), 84
kAnalogOutputChannels (wpilib.sensorbase.SensorBase

attribute), 84
kArcadeRatioCurve_Reported

(wpilib.robotdrive.RobotDrive attribute),
77

kArcadeStandard_Reported
(wpilib.robotdrive.RobotDrive attribute),
77

kAverageBits (wpilib.analoggyro.AnalogGyro attribute),
13

kBoth (wpilib.relay.Relay.Direction attribute), 72
kCalibrationSampleTime

(wpilib.adxrs450_gyro.ADXRS450_Gyro
attribute), 10

kCalibrationSampleTime
(wpilib.analoggyro.AnalogGyro attribute),
13

kDataFormat_FullRes (wpilib.adxl345_i2c.ADXL345_I2C
attribute), 6

kDataFormat_FullRes (wpilib.adxl345_spi.ADXL345_SPI
attribute), 8

kDataFormat_IntInvert (wpilib.adxl345_i2c.ADXL345_I2C
attribute), 6

kDataFormat_IntInvert (wpilib.adxl345_spi.ADXL345_SPI
attribute), 8

kDataFormat_Justify (wpilib.adxl345_i2c.ADXL345_I2C
attribute), 6

kDataFormat_Justify (wpilib.adxl345_spi.ADXL345_SPI
attribute), 8

kDataFormat_SelfTest (wpilib.adxl345_i2c.ADXL345_I2C
attribute), 6

kDataFormat_SelfTest (wpilib.adxl345_spi.ADXL345_SPI
attribute), 8

kDataFormat_SPI (wpilib.adxl345_i2c.ADXL345_I2C
attribute), 6

kDataFormat_SPI (wpilib.adxl345_spi.ADXL345_SPI
attribute), 8

kDataFormatRegister (wpilib.adxl345_i2c.ADXL345_I2C
attribute), 6

kDataFormatRegister (wpilib.adxl345_spi.ADXL345_SPI
attribute), 8

kDataRegister (wpilib.adxl345_i2c.ADXL345_I2C at-
tribute), 6

kDataRegister (wpilib.adxl345_spi.ADXL345_SPI at-
tribute), 8

kDataRegister (wpilib.adxl362.ADXL362 attribute), 9
kDefaultExpirationTime (wpilib.robotdrive.RobotDrive

Index 143

RobotPy WPILib Documentation, Release master

attribute), 77
kDefaultMaxOutput (wpilib.robotdrive.RobotDrive at-

tribute), 77
kDefaultMaxServoPWM (wpilib.servo.Servo attribute),

85
kDefaultMinServoPWM (wpilib.servo.Servo attribute),

85
kDefaultPeriod (wpilib.pidcontroller.PIDController at-

tribute), 63
kDefaultSensitivity (wpilib.robotdrive.RobotDrive

attribute), 77
kDefaultThrottleAxis (wpilib.joystick.Joystick attribute),

55
kDefaultTopButton (wpilib.joystick.Joystick attribute),

55
kDefaultTriggerButton (wpilib.joystick.Joystick at-

tribute), 55
kDefaultTwistAxis (wpilib.joystick.Joystick attribute), 55
kDefaultVoltsPerDegreePerSecond

(wpilib.analoggyro.AnalogGyro attribute),
13

kDefaultXAxis (wpilib.joystick.Joystick attribute), 55
kDefaultYAxis (wpilib.joystick.Joystick attribute), 55
kDefaultZAxis (wpilib.joystick.Joystick attribute), 55
kDegreePerSecondPerLSB

(wpilib.adxrs450_gyro.ADXRS450_Gyro
attribute), 10

kDigitalChannels (wpilib.sensorbase.SensorBase at-
tribute), 84

kDisplacement (wpilib.analogaccelerometer.AnalogAccelerometer.PIDSourceType
attribute), 11

kDisplacement (wpilib.analoggyro.AnalogGyro.PIDSourceType
attribute), 12

kDisplacement (wpilib.analoginput.AnalogInput.PIDSourceType
attribute), 14

kDisplacement (wpilib.analogpotentiometer.AnalogPotentiometer.PIDSourceType
attribute), 17

kDisplacement (wpilib.counter.Counter.PIDSourceType
attribute), 26

kDisplacement (wpilib.encoder.Encoder.PIDSourceType
attribute), 40

kDisplacement (wpilib.gyrobase.GyroBase.PIDSourceType
attribute), 43

kDisplacement (wpilib.interfaces.pidsource.PIDSource.PIDSourceType
attribute), 127

kDisplacement (wpilib.pidcontroller.PIDController.PIDSourceType
attribute), 62

kDisplacement (wpilib.ultrasonic.Ultrasonic.PIDSourceType
attribute), 100

kExternalDirection (wpilib.counter.Counter.Mode at-
tribute), 26

keys() (wpilib.preferences.Preferences method), 67
kFallingPulse (wpilib.analogtrigger.AnalogTrigger.AnalogTriggerType

attribute), 18

kFallingPulse (wpilib.analogtriggeroutput.AnalogTriggerOutput.AnalogTriggerType
attribute), 20

kFaultRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro
attribute), 10

kFilterCtl_ODR_100Hz (wpilib.adxl362.ADXL362 at-
tribute), 9

kFilterCtl_Range2G (wpilib.adxl362.ADXL362 at-
tribute), 9

kFilterCtl_Range4G (wpilib.adxl362.ADXL362 at-
tribute), 9

kFilterCtl_Range8G (wpilib.adxl362.ADXL362 at-
tribute), 9

kFilterCtlRegister (wpilib.adxl362.ADXL362 attribute),
9

kForward (wpilib.doublesolenoid.DoubleSolenoid.Value
attribute), 34

kForward (wpilib.relay.Relay.Direction attribute), 72
kForward (wpilib.relay.Relay.Value attribute), 72
kFrontLeft (wpilib.robotdrive.RobotDrive.MotorType at-

tribute), 76
kFrontRight (wpilib.robotdrive.RobotDrive.MotorType

attribute), 76
kGearToothThreshold (wpilib.geartooth.GearTooth at-

tribute), 43
kGsPerLSB (wpilib.adxl345_i2c.ADXL345_I2C at-

tribute), 6
kGsPerLSB (wpilib.adxl345_spi.ADXL345_SPI at-

tribute), 8
kHiCSTRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro

attribute), 10
kHID1stPerson (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kHIDDriving (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kHIDFlight (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kHIDGamepad (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kHIDJoystick (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kInches (wpilib.ultrasonic.Ultrasonic.Unit attribute), 100
kInWindow (wpilib.analogtrigger.AnalogTrigger.AnalogTriggerType

attribute), 18
kInWindow (wpilib.analogtriggeroutput.AnalogTriggerOutput.AnalogTriggerType

attribute), 20
kJoystickPorts (wpilib.driverstation.DriverStation at-

tribute), 38
kLeft (wpilib.interfaces.generichid.GenericHID.Hand at-

tribute), 47, 124
kLeftRumble (wpilib.interfaces.generichid.GenericHID.RumbleType

attribute), 47, 124
kLoCSTRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro

attribute), 10
kMaxNumberOfMotors (wpilib.robotdrive.RobotDrive

144 Index

RobotPy WPILib Documentation, Release master

attribute), 77
kMaxServoAngle (wpilib.servo.Servo attribute), 85
kMaxUltrasonicTime (wpilib.ultrasonic.Ultrasonic

attribute), 101
kMecanumCartesian_Reported

(wpilib.robotdrive.RobotDrive attribute),
77

kMecanumPolar_Reported
(wpilib.robotdrive.RobotDrive attribute),
77

kMillimeters (wpilib.ultrasonic.Ultrasonic.Unit attribute),
100

kMinServoAngle (wpilib.servo.Servo attribute), 85
kMXP (wpilib.i2c.I2C.Port attribute), 44
kMXP (wpilib.spi.SPI.Port attribute), 95
kNumAxis (wpilib.joystick.Joystick.AxisType attribute),

52
kNumButton (wpilib.joystick.Joystick.ButtonType

attribute), 52
kOff (wpilib.doublesolenoid.DoubleSolenoid.Value at-

tribute), 34
kOff (wpilib.relay.Relay.Value attribute), 72
kOn (wpilib.relay.Relay.Value attribute), 72
kOnboard (wpilib.i2c.I2C.Port attribute), 44
kOnboardCS0 (wpilib.spi.SPI.Port attribute), 95
kOnboardCS1 (wpilib.spi.SPI.Port attribute), 95
kOnboardCS2 (wpilib.spi.SPI.Port attribute), 95
kOnboardCS3 (wpilib.spi.SPI.Port attribute), 95
kOversampleBits (wpilib.analoggyro.AnalogGyro at-

tribute), 13
kPartIdRegister (wpilib.adxl362.ADXL362 attribute), 9
kPCMModules (wpilib.sensorbase.SensorBase attribute),

84
kPDPChannels (wpilib.sensorbase.SensorBase attribute),

84
kPDPModules (wpilib.sensorbase.SensorBase attribute),

84
kPIDRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro

attribute), 10
kPingTime (wpilib.ultrasonic.Ultrasonic attribute), 101
kPowerCtl_AutoSleep (wpilib.adxl345_i2c.ADXL345_I2C

attribute), 6
kPowerCtl_AutoSleep (wpilib.adxl345_spi.ADXL345_SPI

attribute), 8
kPowerCtl_AutoSleep (wpilib.adxl362.ADXL362

attribute), 9
kPowerCtl_Link (wpilib.adxl345_i2c.ADXL345_I2C at-

tribute), 6
kPowerCtl_Link (wpilib.adxl345_spi.ADXL345_SPI at-

tribute), 8
kPowerCtl_Measure (wpilib.adxl345_i2c.ADXL345_I2C

attribute), 6
kPowerCtl_Measure (wpilib.adxl345_spi.ADXL345_SPI

attribute), 8

kPowerCtl_Measure (wpilib.adxl362.ADXL362 at-
tribute), 9

kPowerCtl_Sleep (wpilib.adxl345_i2c.ADXL345_I2C at-
tribute), 7

kPowerCtl_Sleep (wpilib.adxl345_spi.ADXL345_SPI at-
tribute), 8

kPowerCtl_UltraLowNoise (wpilib.adxl362.ADXL362
attribute), 9

kPowerCtlRegister (wpilib.adxl345_i2c.ADXL345_I2C
attribute), 6

kPowerCtlRegister (wpilib.adxl345_spi.ADXL345_SPI
attribute), 8

kPowerCtlRegister (wpilib.adxl362.ADXL362 attribute),
9

kPriority (wpilib.ultrasonic.Ultrasonic attribute), 101
kPulseLength (wpilib.counter.Counter.Mode attribute),

26
kPwmChannels (wpilib.sensorbase.SensorBase attribute),

84
kQuadRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro

attribute), 11
kRate (wpilib.analogaccelerometer.AnalogAccelerometer.PIDSourceType

attribute), 11
kRate (wpilib.analoggyro.AnalogGyro.PIDSourceType

attribute), 12
kRate (wpilib.analoginput.AnalogInput.PIDSourceType

attribute), 14
kRate (wpilib.analogpotentiometer.AnalogPotentiometer.PIDSourceType

attribute), 17
kRate (wpilib.counter.Counter.PIDSourceType attribute),

26
kRate (wpilib.encoder.Encoder.PIDSourceType attribute),

40
kRate (wpilib.gyrobase.GyroBase.PIDSourceType

attribute), 43
kRate (wpilib.interfaces.pidsource.PIDSource.PIDSourceType

attribute), 127
kRate (wpilib.pidcontroller.PIDController.PIDSourceType

attribute), 62
kRate (wpilib.ultrasonic.Ultrasonic.PIDSourceType at-

tribute), 100
kRateRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro

attribute), 11
kRearLeft (wpilib.robotdrive.RobotDrive.MotorType at-

tribute), 76
kRearRight (wpilib.robotdrive.RobotDrive.MotorType at-

tribute), 76
kRegRead (wpilib.adxl362.ADXL362 attribute), 9
kRegWrite (wpilib.adxl362.ADXL362 attribute), 9
kRelayChannels (wpilib.sensorbase.SensorBase at-

tribute), 84
kResetOnFallingEdge (wpilib.encoder.Encoder.IndexingType

attribute), 40
kResetOnRisingEdge (wpilib.encoder.Encoder.IndexingType

Index 145

RobotPy WPILib Documentation, Release master

attribute), 40
kResetWhileHigh (wpilib.encoder.Encoder.IndexingType

attribute), 40
kResetWhileLow (wpilib.encoder.Encoder.IndexingType

attribute), 40
kReverse (wpilib.doublesolenoid.DoubleSolenoid.Value

attribute), 34
kReverse (wpilib.relay.Relay.Direction attribute), 72
kReverse (wpilib.relay.Relay.Value attribute), 72
kRight (wpilib.interfaces.generichid.GenericHID.Hand

attribute), 47, 124
kRightRumble (wpilib.interfaces.generichid.GenericHID.RumbleType

attribute), 47, 124
kRisingPulse (wpilib.analogtrigger.AnalogTrigger.AnalogTriggerType

attribute), 18
kRisingPulse (wpilib.analogtriggeroutput.AnalogTriggerOutput.AnalogTriggerType

attribute), 20
kSamplePeriod (wpilib.adxrs450_gyro.ADXRS450_Gyro

attribute), 11
kSamplesPerSecond (wpilib.analoggyro.AnalogGyro at-

tribute), 13
kSemiperiod (wpilib.counter.Counter.Mode attribute), 26
kSNHighRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro

attribute), 11
kSNLowRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro

attribute), 11
kSolenoidChannels (wpilib.sensorbase.SensorBase

attribute), 84
kSpeedOfSoundInchesPerSec

(wpilib.ultrasonic.Ultrasonic attribute), 101
kState (wpilib.analogtrigger.AnalogTrigger.AnalogTriggerType

attribute), 18
kState (wpilib.analogtriggeroutput.AnalogTriggerOutput.AnalogTriggerType

attribute), 20
kSystemClockTicksPerMicrosecond

(wpilib.sensorbase.SensorBase attribute),
85

kTank_Reported (wpilib.robotdrive.RobotDrive at-
tribute), 77

kTemRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro
attribute), 11

kThrottle (wpilib.joystick.Joystick.AxisType attribute),
52

kTop (wpilib.joystick.Joystick.ButtonType attribute), 52
kTrigger (wpilib.joystick.Joystick.ButtonType attribute),

52
kTwist (wpilib.joystick.Joystick.AxisType attribute), 52
kTwoPulse (wpilib.counter.Counter.Mode attribute), 26
kUnknown (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kX (wpilib.adxl345_i2c.ADXL345_I2C.Axes attribute),

5
kX (wpilib.adxl345_spi.ADXL345_SPI.Axes attribute), 7
kX (wpilib.adxl362.ADXL362.Axes attribute), 8

kX (wpilib.joystick.Joystick.AxisType attribute), 52
kXInputArcadePad (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kXInputArcadeStick (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kXInputDancePad (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kXInputDrumKit (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kXInputFlightStick (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kXInputGamepad (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kXInputGuitar (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 46, 124
kXInputGuitar2 (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 47, 124
kXInputGuitar3 (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 47, 124
kXInputUnknown (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 47, 124
kXInputWheel (wpilib.interfaces.generichid.GenericHID.HIDType

attribute), 47, 124
kY (wpilib.adxl345_i2c.ADXL345_I2C.Axes attribute),

6
kY (wpilib.adxl345_spi.ADXL345_SPI.Axes attribute), 7
kY (wpilib.adxl362.ADXL362.Axes attribute), 8
kY (wpilib.joystick.Joystick.AxisType attribute), 52
kZ (wpilib.adxl345_i2c.ADXL345_I2C.Axes attribute), 6
kZ (wpilib.adxl345_spi.ADXL345_SPI.Axes attribute), 7
kZ (wpilib.adxl362.ADXL362.Axes attribute), 8
kZ (wpilib.joystick.Joystick.AxisType attribute), 52

L
launch() (wpilib.cameraserver.CameraServer class

method), 21
limit() (wpilib.robotdrive.RobotDrive static method), 77
LinearDigitalFilter (class in wpilib.lineardigitalfilter), 56
LiveWindow (class in wpilib.livewindow), 58
liveWindowEnabled (wpilib.livewindow.LiveWindow at-

tribute), 59
LiveWindowSendable (class in

wpilib.livewindowsendable), 60
livewindowTable (wpilib.livewindow.LiveWindow

attribute), 59
lockChanges() (wpilib.command.command.Command

method), 111
logger (wpilib.iterativerobot.IterativeRobot attribute), 50
logger (wpilib.samplerobot.SampleRobot attribute), 81

M
main() (wpilib.robotbase.RobotBase static method), 75
mecanumDrive_Cartesian()

(wpilib.robotdrive.RobotDrive method),

146 Index

RobotPy WPILib Documentation, Release master

77
mecanumDrive_Polar() (wpilib.robotdrive.RobotDrive

method), 78
MotorSafety (class in wpilib.motorsafety), 60
movingAverage() (wpilib.lineardigitalfilter.LinearDigitalFilter

static method), 57
mutex (wpilib.digitalglitchfilter.DigitalGlitchFilter

attribute), 30

N
NamedSendable (class in

wpilib.interfaces.namedsendable), 126
NetworkButton (class in wpilib.buttons.networkbutton),

107
normalize() (wpilib.robotdrive.RobotDrive static

method), 78

O
onTarget() (wpilib.command.pidsubsystem.PIDSubsystem

method), 116
onTarget() (wpilib.pidcontroller.PIDController method),

63
operatorControl() (wpilib.samplerobot.SampleRobot

method), 81
OPTIONS (wpilib.sendablechooser.SendableChooser at-

tribute), 83

P
PercentageTolerance_onTarget()

(wpilib.pidcontroller.PIDController method),
62

PIDCommand (class in wpilib.command.pidcommand),
115

PIDController (class in wpilib.pidcontroller), 61
PIDController.PIDSourceType (class in

wpilib.pidcontroller), 62
pidGet() (wpilib.analogaccelerometer.AnalogAccelerometer

method), 11
pidGet() (wpilib.analoginput.AnalogInput method), 15
pidGet() (wpilib.analogpotentiometer.AnalogPotentiometer

method), 17
pidGet() (wpilib.counter.Counter method), 27
pidGet() (wpilib.encoder.Encoder method), 41
pidGet() (wpilib.filter.Filter method), 42
pidGet() (wpilib.gyrobase.GyroBase method), 43
pidGet() (wpilib.interfaces.pidsource.PIDSource

method), 127
pidGet() (wpilib.lineardigitalfilter.LinearDigitalFilter

method), 58
pidGet() (wpilib.ultrasonic.Ultrasonic method), 101
pidGetSource() (wpilib.filter.Filter method), 42
PIDInterface (class in wpilib.interfaces.pidinterface), 126
PIDOutput (class in wpilib.interfaces.pidoutput), 127
PIDSource (class in wpilib.interfaces.pidsource), 127

PIDSource.PIDSourceType (class in
wpilib.interfaces.pidsource), 127

PIDSubsystem (class in wpilib.command.pidsubsystem),
116

pidWrite() (wpilib.interfaces.pidoutput.PIDOutput
method), 127

pidWrite() (wpilib.pwmspeedcontroller.PWMSpeedController
method), 71

ping() (wpilib.ultrasonic.Ultrasonic method), 101
port (wpilib.analoginput.AnalogInput attribute), 15
port (wpilib.analogoutput.AnalogOutput attribute), 16
port (wpilib.analogtrigger.AnalogTrigger attribute), 18
port (wpilib.i2c.I2C attribute), 44
port (wpilib.spi.SPI attribute), 96
Potentiometer (class in wpilib.interfaces.potentiometer),

128
PowerDistributionPanel (class in

wpilib.powerdistributionpanel), 65
Preferences (class in wpilib.preferences), 66
PrintCommand (class in

wpilib.command.printcommand), 118
pulse() (wpilib.digitaloutput.DigitalOutput method), 32
putBoolean() (wpilib.preferences.Preferences method),

67
putBoolean() (wpilib.smartdashboard.SmartDashboard

class method), 89
putBooleanArray() (wpilib.smartdashboard.SmartDashboard

class method), 89
putData() (wpilib.smartdashboard.SmartDashboard class

method), 89
putDouble() (wpilib.smartdashboard.SmartDashboard

class method), 90
putFloat() (wpilib.preferences.Preferences method), 67
putInt() (wpilib.preferences.Preferences method), 67
putInt() (wpilib.smartdashboard.SmartDashboard class

method), 90
putNumber() (wpilib.smartdashboard.SmartDashboard

class method), 90
putNumberArray() (wpilib.smartdashboard.SmartDashboard

class method), 90
putRaw() (wpilib.smartdashboard.SmartDashboard class

method), 90
putString() (wpilib.preferences.Preferences method), 67
putString() (wpilib.smartdashboard.SmartDashboard

class method), 90
putStringArray() (wpilib.smartdashboard.SmartDashboard

class method), 91
PWM (class in wpilib.pwm), 68
PWM.PeriodMultiplier (class in wpilib.pwm), 68
pwmGenerator (wpilib.digitaloutput.DigitalOutput

attribute), 32
PWMSpeedController (class in

wpilib.pwmspeedcontroller), 71

Index 147

RobotPy WPILib Documentation, Release master

R
read() (wpilib.i2c.I2C method), 44
read() (wpilib.spi.SPI method), 96
readFallingTimestamp() (wpilib.interruptablesensorbase.InterruptableSensorBase

method), 49
readOnly() (wpilib.i2c.I2C method), 44
readRisingTimestamp() (wpilib.interruptablesensorbase.InterruptableSensorBase

method), 49
Red (wpilib.driverstation.DriverStation.Alliance at-

tribute), 35
registerSubsystem() (wpilib.command.scheduler.Scheduler

method), 118
Relay (class in wpilib.relay), 72
Relay.Direction (class in wpilib.relay), 72
Relay.Value (class in wpilib.relay), 72
relayChannels (wpilib.relay.Relay attribute), 73
release() (wpilib.driverstation.DriverStation method), 38
remove() (wpilib.command.scheduler.Scheduler method),

119
remove() (wpilib.digitalglitchfilter.DigitalGlitchFilter

method), 30
remove() (wpilib.preferences.Preferences method), 68
removeAll() (wpilib.command.scheduler.Scheduler

method), 119
removeComponent() (wpilib.livewindow.LiveWindow

static method), 59
removed() (wpilib.command.command.Command

method), 111
reportError() (wpilib.driverstation.DriverStation static

method), 38
reportWarning() (wpilib.driverstation.DriverStation static

method), 38
requestInterrupts() (wpilib.interruptablesensorbase.InterruptableSensorBase

method), 49
requires() (wpilib.command.command.Command

method), 111
reset() (wpilib.adxrs450_gyro.ADXRS450_Gyro

method), 11
reset() (wpilib.analoggyro.AnalogGyro method), 13
reset() (wpilib.counter.Counter method), 27
reset() (wpilib.encoder.Encoder method), 41
reset() (wpilib.filter.Filter method), 42
reset() (wpilib.gyrobase.GyroBase method), 43
reset() (wpilib.interfaces.counterbase.CounterBase

method), 123
reset() (wpilib.interfaces.gyro.Gyro method), 126
reset() (wpilib.interfaces.pidinterface.PIDInterface

method), 127
reset() (wpilib.lineardigitalfilter.LinearDigitalFilter

method), 58
reset() (wpilib.pidcontroller.PIDController method), 63
reset() (wpilib.timer.Timer method), 99
resetAccumulator() (wpilib.analoginput.AnalogInput

method), 15

resetAccumulator() (wpilib.spi.SPI method), 96
resetTotalEnergy() (wpilib.powerdistributionpanel.PowerDistributionPanel

method), 65
Resource (class in wpilib.resource), 73
returnPIDInput() (wpilib.command.pidcommand.PIDCommand

method), 115
returnPIDInput() (wpilib.command.pidsubsystem.PIDSubsystem

method), 117
reverseHandle (wpilib.relay.Relay attribute), 73
RobotBase (class in wpilib.robotbase), 74
RobotDrive (class in wpilib.robotdrive), 75
RobotDrive.MotorType (class in wpilib.robotdrive), 76
robotInit() (wpilib.iterativerobot.IterativeRobot method),

51
robotInit() (wpilib.samplerobot.SampleRobot method),

81
robotMain() (wpilib.samplerobot.SampleRobot method),

81
robotPeriodic() (wpilib.iterativerobot.IterativeRobot

method), 51
RobotState (class in wpilib.robotstate), 79
rotateVector() (wpilib.robotdrive.RobotDrive static

method), 78
run() (wpilib.command.command.Command method),

111
run() (wpilib.command.scheduler.Scheduler method), 119
run() (wpilib.livewindow.LiveWindow static method), 59

S
SafePWM (class in wpilib.safepwm), 80
SampleRobot (class in wpilib.samplerobot), 80
Scheduler (class in wpilib.command.scheduler), 118
SD540 (class in wpilib.sd540), 82
SELECTED (wpilib.sendablechooser.SendableChooser

attribute), 83
Sendable (class in wpilib.sendable), 82
SendableChooser (class in wpilib.sendablechooser), 82
SensorBase (class in wpilib.sensorbase), 83
sensors (wpilib.livewindow.LiveWindow attribute), 59
sensors (wpilib.ultrasonic.Ultrasonic attribute), 101
Servo (class in wpilib.servo), 85
set() (wpilib.digitaloutput.DigitalOutput method), 33
set() (wpilib.doublesolenoid.DoubleSolenoid method), 34
set() (wpilib.interfaces.speedcontroller.SpeedController

method), 128
set() (wpilib.pwmspeedcontroller.PWMSpeedController

method), 71
set() (wpilib.relay.Relay method), 73
set() (wpilib.servo.Servo method), 85
set() (wpilib.solenoid.Solenoid method), 93
setAbsoluteTolerance() (wpilib.command.pidsubsystem.PIDSubsystem

method), 117
setAbsoluteTolerance() (wpilib.pidcontroller.PIDController

method), 63

148 Index

RobotPy WPILib Documentation, Release master

setAccumulatorCenter() (wpilib.analoginput.AnalogInput
method), 15

setAccumulatorCenter() (wpilib.spi.SPI method), 96
setAccumulatorDeadband()

(wpilib.analoginput.AnalogInput method),
16

setAccumulatorDeadband() (wpilib.spi.SPI method), 96
setAccumulatorInitialValue()

(wpilib.analoginput.AnalogInput method),
16

setAngle() (wpilib.servo.Servo method), 86
setAutomaticMode() (wpilib.ultrasonic.Ultrasonic

method), 101
setAverageBits() (wpilib.analoginput.AnalogInput

method), 16
setAveraged() (wpilib.analogtrigger.AnalogTrigger

method), 18
setAxisChannel() (wpilib.joystick.Joystick method), 55
setBounds() (wpilib.pwm.PWM method), 70
setChipSelectActiveHigh() (wpilib.spi.SPI method), 96
setChipSelectActiveLow() (wpilib.spi.SPI method), 96
setClockActiveHigh() (wpilib.spi.SPI method), 96
setClockActiveLow() (wpilib.spi.SPI method), 96
setClockRate() (wpilib.spi.SPI method), 96
setClosedLoopControl() (wpilib.compressor.Compressor

method), 23
setContinuous() (wpilib.pidcontroller.PIDController

method), 63
setCurrentCommand() (wpilib.command.subsystem.Subsystem

method), 120
setDeadband() (wpilib.analoggyro.AnalogGyro method),

13
setDefaultBoolean() (wpilib.smartdashboard.SmartDashboard

class method), 91
setDefaultBooleanArray()

(wpilib.smartdashboard.SmartDashboard
class method), 91

setDefaultCommand() (wpilib.command.subsystem.Subsystem
method), 120

setDefaultNumber() (wpilib.smartdashboard.SmartDashboard
class method), 91

setDefaultNumberArray()
(wpilib.smartdashboard.SmartDashboard
class method), 91

setDefaultRaw() (wpilib.smartdashboard.SmartDashboard
class method), 91

setDefaultSolenoidModule()
(wpilib.sensorbase.SensorBase static method),
85

setDefaultString() (wpilib.smartdashboard.SmartDashboard
class method), 92

setDefaultStringArray() (wpilib.smartdashboard.SmartDashboard
class method), 92

setDirection() (wpilib.relay.Relay method), 73

setDisabled() (wpilib.pwm.PWM method), 70
setDistancePerPulse() (wpilib.counter.Counter method),

27
setDistancePerPulse() (wpilib.encoder.Encoder method),

41
setDistanceUnits() (wpilib.ultrasonic.Ultrasonic method),

101
setDownSource() (wpilib.counter.Counter method), 27
setDownSourceEdge() (wpilib.counter.Counter method),

28
setEnabled() (wpilib.livewindow.LiveWindow static

method), 59
setEnabled() (wpilib.ultrasonic.Ultrasonic method), 101
setExpiration() (wpilib.motorsafety.MotorSafety

method), 61
setExternalDirectionMode() (wpilib.counter.Counter

method), 28
setFiltered() (wpilib.analogtrigger.AnalogTrigger

method), 18
setFlags() (wpilib.smartdashboard.SmartDashboard class

method), 92
setGlobalSampleRate() (wpilib.analoginput.AnalogInput

static method), 16
setIndexSource() (wpilib.encoder.Encoder method), 41
setInputRange() (wpilib.command.pidsubsystem.PIDSubsystem

method), 117
setInputRange() (wpilib.pidcontroller.PIDController

method), 64
setInterruptible() (wpilib.command.command.Command

method), 111
setInverted() (wpilib.buttons.internalbutton.InternalButton

method), 107
setInverted() (wpilib.interfaces.speedcontroller.SpeedController

method), 128
setInverted() (wpilib.pwmspeedcontroller.PWMSpeedController

method), 71
setInvertedMotor() (wpilib.robotdrive.RobotDrive

method), 78
setLeftRightMotorOutputs()

(wpilib.robotdrive.RobotDrive method),
78

setLimitsRaw() (wpilib.analogtrigger.AnalogTrigger
method), 19

setLimitsVoltage() (wpilib.analogtrigger.AnalogTrigger
method), 19

setLSBFirst() (wpilib.spi.SPI method), 96
setMaxOutput() (wpilib.robotdrive.RobotDrive method),

78
setMaxPeriod() (wpilib.counter.Counter method), 28
setMaxPeriod() (wpilib.encoder.Encoder method), 41
setMaxPeriod() (wpilib.interfaces.counterbase.CounterBase

method), 123
setMinRate() (wpilib.encoder.Encoder method), 41
setMSBFirst() (wpilib.spi.SPI method), 96

Index 149

RobotPy WPILib Documentation, Release master

setOutput() (wpilib.interfaces.gamepadbase.GamepadBase
method), 46

setOutput() (wpilib.interfaces.generichid.GenericHID
method), 48, 125

setOutput() (wpilib.joystick.Joystick method), 56
setOutput() (wpilib.xboxcontroller.XboxController

method), 105
setOutputRange() (wpilib.command.pidsubsystem.PIDSubsystem

method), 117
setOutputRange() (wpilib.pidcontroller.PIDController

method), 64
setOutputs() (wpilib.interfaces.gamepadbase.GamepadBase

method), 46
setOutputs() (wpilib.interfaces.generichid.GenericHID

method), 48, 125
setOutputs() (wpilib.joystick.Joystick method), 56
setOutputs() (wpilib.xboxcontroller.XboxController

method), 105
setOversampleBits() (wpilib.analoginput.AnalogInput

method), 16
setParent() (wpilib.command.command.Command

method), 111
setPercentTolerance() (wpilib.command.pidsubsystem.PIDSubsystem

method), 117
setPercentTolerance() (wpilib.pidcontroller.PIDController

method), 64
setPeriodCycles() (wpilib.digitalglitchfilter.DigitalGlitchFilter

method), 30
setPeriodMultiplier() (wpilib.pwm.PWM method), 70
setPeriodNanoSeconds() (wpilib.digitalglitchfilter.DigitalGlitchFilter

method), 30
setPersistent() (wpilib.smartdashboard.SmartDashboard

class method), 92
setPID() (wpilib.interfaces.pidinterface.PIDInterface

method), 127
setPID() (wpilib.pidcontroller.PIDController method), 64
setPIDSourceType() (wpilib.analogaccelerometer.AnalogAccelerometer

method), 11
setPIDSourceType() (wpilib.analoginput.AnalogInput

method), 16
setPIDSourceType() (wpilib.analogpotentiometer.AnalogPotentiometer

method), 17
setPIDSourceType() (wpilib.counter.Counter method), 28
setPIDSourceType() (wpilib.encoder.Encoder method),

42
setPIDSourceType() (wpilib.filter.Filter method), 42
setPIDSourceType() (wpilib.gyrobase.GyroBase

method), 43
setPIDSourceType() (wpilib.interfaces.pidsource.PIDSource

method), 128
setPIDSourceType() (wpilib.pidcontroller.PIDController

method), 64
setPIDSourceType() (wpilib.ultrasonic.Ultrasonic

method), 102

setPosition() (wpilib.pwm.PWM method), 70
setPressed() (wpilib.buttons.internalbutton.InternalButton

method), 107
setPulseLengthMode() (wpilib.counter.Counter method),

28
setPWMRate() (wpilib.digitaloutput.DigitalOutput

method), 33
setRange() (wpilib.adxl345_i2c.ADXL345_I2C method),

7
setRange() (wpilib.adxl345_spi.ADXL345_SPI method),

8
setRange() (wpilib.adxl362.ADXL362 method), 9
setRange() (wpilib.builtinaccelerometer.BuiltInAccelerometer

method), 21
setRange() (wpilib.interfaces.accelerometer.Accelerometer

method), 122
setRaw() (wpilib.pwm.PWM method), 70
setRawBounds() (wpilib.pwm.PWM method), 70
setReverseDirection() (wpilib.counter.Counter method),

29
setReverseDirection() (wpilib.encoder.Encoder method),

42
setRumble() (wpilib.interfaces.gamepadbase.GamepadBase

method), 46
setRumble() (wpilib.interfaces.generichid.GenericHID

method), 48, 125
setRumble() (wpilib.joystick.Joystick method), 56
setRumble() (wpilib.xboxcontroller.XboxController

method), 105
setRunWhenDisabled() (wpilib.command.command.Command

method), 112
setSafetyEnabled() (wpilib.motorsafety.MotorSafety

method), 61
setSampleDataOnFalling() (wpilib.spi.SPI method), 96
setSampleDataOnRising() (wpilib.spi.SPI method), 96
setSamplesToAverage() (wpilib.counter.Counter method),

29
setSamplesToAverage() (wpilib.encoder.Encoder

method), 42
setSemiPeriodMode() (wpilib.counter.Counter method),

29
setSensitivity() (wpilib.analogaccelerometer.AnalogAccelerometer

method), 12
setSensitivity() (wpilib.analoggyro.AnalogGyro method),

13
setSensitivity() (wpilib.robotdrive.RobotDrive method),

79
setSetpoint() (wpilib.command.pidcommand.PIDCommand

method), 115
setSetpoint() (wpilib.command.pidsubsystem.PIDSubsystem

method), 117
setSetpoint() (wpilib.interfaces.pidinterface.PIDInterface

method), 127
setSetpoint() (wpilib.pidcontroller.PIDController

150 Index

RobotPy WPILib Documentation, Release master

method), 64
setSetpointRelative() (wpilib.command.pidcommand.PIDCommand

method), 115
setSetpointRelative() (wpilib.command.pidsubsystem.PIDSubsystem

method), 117
setSpeed() (wpilib.pwm.PWM method), 71
setTimeout() (wpilib.command.command.Command

method), 112
setTolerance() (wpilib.pidcontroller.PIDController

method), 64
setToleranceBuffer() (wpilib.pidcontroller.PIDController

method), 64
setUpdateWhenEmpty() (wpilib.counter.Counter

method), 30
setUpDownCounterMode() (wpilib.counter.Counter

method), 29
setUpSource() (wpilib.counter.Counter method), 29
setUpSourceEdge() (wpilib.counter.Counter method), 29
setUpSourceEdge() (wpilib.interruptablesensorbase.InterruptableSensorBase

method), 49
setVoltage() (wpilib.analogoutput.AnalogOutput

method), 17
setZero() (wpilib.analogaccelerometer.AnalogAccelerometer

method), 12
setZeroLatch() (wpilib.pwm.PWM method), 71
singlePoleIIR() (wpilib.lineardigitalfilter.LinearDigitalFilter

static method), 58
SmartDashboard (class in wpilib.smartdashboard), 86
Solenoid (class in wpilib.solenoid), 92
SolenoidBase (class in wpilib.solenoidbase), 93
solenoidHandle (wpilib.solenoid.Solenoid attribute), 93
Spark (class in wpilib.spark), 94
SpeedController (class in

wpilib.interfaces.speedcontroller), 128
SPI (class in wpilib.spi), 94
SPI.Port (class in wpilib.spi), 94
start() (wpilib.command.command.Command method),

112
start() (wpilib.compressor.Compressor method), 23
start() (wpilib.timer.Timer method), 99
StartCommand (class in wpilib.command.startcommand),

119
startCompetition() (wpilib.iterativerobot.IterativeRobot

method), 51
startCompetition() (wpilib.robotbase.RobotBase method),

75
startCompetition() (wpilib.samplerobot.SampleRobot

method), 81
startRunning() (wpilib.command.command.Command

method), 112
startTiming() (wpilib.command.command.Command

method), 112
statusTable (wpilib.livewindow.LiveWindow attribute),

60

stop() (wpilib.compressor.Compressor method), 23
stop() (wpilib.timer.Timer method), 99
stopMotor() (wpilib.interfaces.speedcontroller.SpeedController

method), 128
stopMotor() (wpilib.relay.Relay method), 73
stopMotor() (wpilib.robotdrive.RobotDrive method), 79
stopMotor() (wpilib.safepwm.SafePWM method), 80
Subsystem (class in wpilib.command.subsystem), 119

T
table (wpilib.smartdashboard.SmartDashboard attribute),

92
TABLE_NAME (wpilib.preferences.Preferences at-

tribute), 66
tablesToData (wpilib.smartdashboard.SmartDashboard

attribute), 92
Talon (class in wpilib.talon), 97
TalonSRX (class in wpilib.talonsrx), 98
tankDrive() (wpilib.robotdrive.RobotDrive method), 79
teleopInit() (wpilib.iterativerobot.IterativeRobot method),

51
teleopPeriodic() (wpilib.iterativerobot.IterativeRobot

method), 51
test() (wpilib.samplerobot.SampleRobot method), 81
testInit() (wpilib.iterativerobot.IterativeRobot method),

51
testPeriodic() (wpilib.iterativerobot.IterativeRobot

method), 51
TimedCommand (class in

wpilib.command.timedcommand), 120
Timer (class in wpilib.timer), 98
timeSinceInitialized() (wpilib.command.command.Command

method), 112
toggleWhenActive() (wpilib.buttons.trigger.Trigger

method), 108
toggleWhenPressed() (wpilib.buttons.button.Button

method), 106
transaction() (wpilib.i2c.I2C method), 44
transaction() (wpilib.spi.SPI method), 96
Trigger (class in wpilib.buttons.trigger), 107

U
Ultrasonic (class in wpilib.ultrasonic), 100
Ultrasonic.PIDSourceType (class in wpilib.ultrasonic),

100
Ultrasonic.Unit (class in wpilib.ultrasonic), 100
ultrasonicChecker() (wpilib.ultrasonic.Ultrasonic static

method), 102
updateDutyCycle() (wpilib.digitaloutput.DigitalOutput

method), 33
updateValues() (wpilib.livewindow.LiveWindow static

method), 60
usePIDOutput() (wpilib.command.pidcommand.PIDCommand

method), 116

Index 151

RobotPy WPILib Documentation, Release master

usePIDOutput() (wpilib.command.pidsubsystem.PIDSubsystem
method), 117

Utility (class in wpilib.utility), 102

V
valueChangedEx() (wpilib.preferences.Preferences

method), 68
verifySensor() (wpilib.i2c.I2C method), 45
Victor (class in wpilib.victor), 103
VictorSP (class in wpilib.victorsp), 103

W
WaitCommand (class in wpilib.command.waitcommand),

120
WaitForChildren (class in

wpilib.command.waitforchildren), 121
waitForData() (wpilib.driverstation.DriverStation

method), 38
waitForInterrupt() (wpilib.interruptablesensorbase.InterruptableSensorBase

method), 49
WaitUntilCommand (class in

wpilib.command.waituntilcommand), 121
whenActive() (wpilib.buttons.trigger.Trigger method),

108
whenInactive() (wpilib.buttons.trigger.Trigger method),

108
whenPressed() (wpilib.buttons.button.Button method),

106
whenReleased() (wpilib.buttons.button.Button method),

106
whileActive() (wpilib.buttons.trigger.Trigger method),

108
whileHeld() (wpilib.buttons.button.Button method), 106
willRunWhenDisabled() (wpilib.command.command.Command

method), 112
wpilib (module), 3
wpilib.adxl345_i2c (module), 5
wpilib.adxl345_spi (module), 7
wpilib.adxl362 (module), 8
wpilib.adxrs450_gyro (module), 10
wpilib.analogaccelerometer (module), 11
wpilib.analoggyro (module), 12
wpilib.analoginput (module), 13
wpilib.analogoutput (module), 16
wpilib.analogpotentiometer (module), 17
wpilib.analogtrigger (module), 18
wpilib.analogtriggeroutput (module), 19
wpilib.builtinaccelerometer (module), 20
wpilib.buttons (module), 106
wpilib.buttons.button (module), 106
wpilib.buttons.internalbutton (module), 107
wpilib.buttons.joystickbutton (module), 107
wpilib.buttons.networkbutton (module), 107
wpilib.buttons.trigger (module), 107

wpilib.cameraserver (module), 21
wpilib.canjaguar (module), 21
wpilib.cantalon (module), 21
wpilib.command (module), 108
wpilib.command.command (module), 109
wpilib.command.commandgroup (module), 112
wpilib.command.conditionalcommand (module), 114
wpilib.command.instantcommand (module), 114
wpilib.command.pidcommand (module), 115
wpilib.command.pidsubsystem (module), 116
wpilib.command.printcommand (module), 118
wpilib.command.scheduler (module), 118
wpilib.command.startcommand (module), 119
wpilib.command.subsystem (module), 119
wpilib.command.timedcommand (module), 120
wpilib.command.waitcommand (module), 120
wpilib.command.waitforchildren (module), 121
wpilib.command.waituntilcommand (module), 121
wpilib.compressor (module), 22
wpilib.controllerpower (module), 23
wpilib.counter (module), 25
wpilib.digitalglitchfilter (module), 30
wpilib.digitalinput (module), 31
wpilib.digitaloutput (module), 31
wpilib.digitalsource (module), 33
wpilib.doublesolenoid (module), 33
wpilib.driverstation (module), 34
wpilib.encoder (module), 38
wpilib.filter (module), 42
wpilib.geartooth (module), 42
wpilib.gyrobase (module), 43
wpilib.i2c (module), 43
wpilib.interfaces (module), 121
wpilib.interfaces.accelerometer (module), 122
wpilib.interfaces.controller (module), 122
wpilib.interfaces.counterbase (module), 123
wpilib.interfaces.gamepadbase (module), 46
wpilib.interfaces.generichid (module), 46, 123
wpilib.interfaces.gyro (module), 126
wpilib.interfaces.namedsendable (module), 126
wpilib.interfaces.pidinterface (module), 126
wpilib.interfaces.pidoutput (module), 127
wpilib.interfaces.pidsource (module), 127
wpilib.interfaces.potentiometer (module), 128
wpilib.interfaces.speedcontroller (module), 128
wpilib.interruptablesensorbase (module), 48
wpilib.iterativerobot (module), 49
wpilib.jaguar (module), 52
wpilib.joystick (module), 52
wpilib.lineardigitalfilter (module), 56
wpilib.livewindow (module), 58
wpilib.livewindowsendable (module), 60
wpilib.motorsafety (module), 60
wpilib.pidcontroller (module), 61

152 Index

RobotPy WPILib Documentation, Release master

wpilib.powerdistributionpanel (module), 65
wpilib.preferences (module), 66
wpilib.pwm (module), 68
wpilib.pwmspeedcontroller (module), 71
wpilib.relay (module), 72
wpilib.resource (module), 73
wpilib.robotbase (module), 74
wpilib.robotdrive (module), 75
wpilib.robotstate (module), 79
wpilib.safepwm (module), 80
wpilib.samplerobot (module), 80
wpilib.sd540 (module), 82
wpilib.sendable (module), 82
wpilib.sendablechooser (module), 82
wpilib.sensorbase (module), 83
wpilib.servo (module), 85
wpilib.smartdashboard (module), 86
wpilib.solenoid (module), 92
wpilib.solenoidbase (module), 93
wpilib.spark (module), 94
wpilib.spi (module), 94
wpilib.talon (module), 97
wpilib.talonsrx (module), 98
wpilib.timer (module), 98
wpilib.ultrasonic (module), 100
wpilib.utility (module), 102
wpilib.victor (module), 103
wpilib.victorsp (module), 103
wpilib.xboxcontroller (module), 104
write() (wpilib.i2c.I2C method), 45
write() (wpilib.spi.SPI method), 97
writeBulk() (wpilib.i2c.I2C method), 45

X
XboxController (class in wpilib.xboxcontroller), 104

Index 153

	WPILib API
	wpilib Package
	wpilib.buttons Package
	wpilib.command Package
	wpilib.interfaces Package

	Indices and tables
	Python Module Index

