

pynetworktables2js

A cross platform library that forwards NetworkTables key/values over a WebSocket,
so that you can easily write a Driver Station Dashboard for your robot in HTML5 +
JavaScript.

This library does not provide a full dashboard solution, but is intended to
provide the necessary plumbing for one to create one with only knowledge
of HTML/JavaScript. Because the communications layer uses NetworkTables, you
can connect to all FRC languages (C++, Java, LabVIEW, Python).

Note

NetworkTables is a protocol used for robot communication in the
FIRST Robotics Competition, and can be used to talk to
Shuffleboard/SmartDashboard. It does not have any security, and should never
be used on untrusted networks.

Documentation

Documentation can be found at http://pynetworktables2js.readthedocs.org/

Installation

Easy install (Windows only)

	Download the latest pynetworktables2js.exe from GitHub at
https://github.com/robotpy/pynetworktables2js/releases .

	Extract the exe from the zipfile, and copy it to your directory of HTML/JS
files.

	Double click the exe to run it!

Note

By default, it will connect to 127.0.0.1. To connect to a robot,
you will need to pass the exe arguments to tell it where the robot is.
Use --help to see the available options.

Manual install

Make sure to install python 3 on your computer, and on Windows you can
execute:

py -3 -m pip install pynetworktables2js

On Linux/OSX you can execute:

pip install pynetworktables2js

Note

Technically, there’s nothing stopping you from installing this on
your robot, as there is a python interpreter available on the
roboRIO (RobotPy). However, due to FRC bandwidth limitations,
it’s probably best to run the UI + server on your driver station
laptop.

Why make an HTML/Javascript dashboard?

TL;DR: It’s simpler.

pynetworktables2js lowers the barrier of entry for teams that want an
additional way to tune/control their robot with a minimal amount of
programming.

Lots of students and mentors know how to create simple web pages to display
content, and there’s lots of resources out there for creating dynamic content
for webpages that use javascript. There is a lot of visually appealing
content that others have created using web technologies – why not leverage
those resources to make something cool to control your robot?

Usage

You can just distribute your HTML files, and run a pynetworktables server
using the following command from inside the directory:

python3 -m pynetworktables2js

Or on Windows:

py -3 -m pynetworktables2js

This will start a pynetworktables2js server using Tornado (which is installed
by default) and it will serve the current directory. You can navigate your
browser (I recommend Chrome) to http://127.0.0.1:8888 and see your website.

You will want to also pass either the --robot or --team switch:

py -3 -m pynetworktables2js --robot roborio-XXXX-frc.local
py -3 -m pynetworktables2js --team XXXX

Dashboard mode currently doesn’t work, as the underlying support in
pynetworktables hasn’t been implemented yet for the newer FRC Driver Station.

Customized python server

There are two example servers distributed with pynetworktables2js, one that
uses tornado [http://www.tornadoweb.org/en/stable/], and one that uses
aiohttp [https://github.com/KeepSafe/aiohttp]. Either one should work.

Go to the ‘example’ directory distributed with pynetworktables2js, and run:

python3 tornado_server.py --robot 127.0.0.1

If you want to try this out with your current robot, you can do:

python3 tornado_server.py --robot roborio-XXX.local

If you are running pynetworktables2js on your driver station laptop, you can
receive robot IP information directly from the Driver Station (handy during
actual competitions):

python3 tornado_server.py --dashboard

If you navigate your browser (I recommend Chrome) to http://127.0.0.1:8888, all
of the current NetworkTables values will be shown as they change.

One way of testing this out is use FIRST’s TableViewer application (you can
launch it using the “Outline Viewer” WPILib menu item in Eclipse), and start
it in server mode.

Feel free to copy the example directory to create your own customized
dashboard. Just add your custom files to the www directory.

Contributing new changes

pynetworktables2js is intended to be a project that all members of the FIRST
community can quickly and easily contribute to. If you find a bug, or have an
idea that you think others can use:

	Fork this git repository [https://github.com/robotpy/pynetworktables2js/fork]
to your GitHub account

	Create your feature branch (git checkout -b my-new-feature)

	Commit your changes (git commit -am 'Add some feature')

	Push to the branch (git push -u origin my-new-feature)

	Create new Pull Request on GitHub

One place in particular I would love to see contributions is in adding useful
JavaScript functions/objects that make creating dashboards even easier!

Authors

Leon Tan of FRC Team 1418 did the initial research/work to get this working,
and created an initial working prototype for Team 1418’s 2015 Dashboard, which
was instrumental to winning an Innovation In Control award at the 2015 Greater
DC Regional.

Dustin Spicuzza cleaned stuff up, rewrote things, added more functionality,
wrote documentation, and packaged it so other teams could use it.

	JS API: NetworkTables
	Listeners

	NetworkTables Interface

	Utility functions

	JS API: JQuery Extensions

	JS API: Utilities
	SendableChooser

	Indicators

	JS API: Camera Integration

	Troubleshooting

Indices and tables

	Index

	Module Index

	Search Page

JS API: NetworkTables

To use these functions, add this to your HTML page:

<script src="/networktables/networktables.js"></script>

Note:

It’s very important to note that the Javascript NetworkTables API currently
has no concept of a table or subtable. When referring to keys when accessing
the API you must use absolute paths, and not just key names. For example,
if you use SmartDashboard.putNumber('foo', 1) to put a value called foo,
then to access the value using the Javascript API you would use
NetworkTables.getValue('/SmartDashboard/foo').

Listeners

These functions allow your code to listen for particular NetworkTables events.

	
NetworkTables.addWsConnectionListener(f[, immediateNotify])

	Sets a function to be called when the websocket connects/disconnects

	Arguments

	
	f – a function that will be called with a single boolean parameter
that indicates whether the websocket is connected

	immediateNotify – If true, the function will be immediately called
with the current status of the websocket

Example usage:

NetworkTables.addWsConnectionListener(function(connected){
 console.log("Websocket connected: " + connected);
}, true);

	
NetworkTables.addRobotConnectionListener(f[, immediateNotify])

	Sets a function to be called when the robot connects/disconnects to the
pynetworktables2js server via NetworkTables. It will also be called when
the websocket connects/disconnects.

When a listener function is called with a ‘true’ parameter, the
NetworkTables.getRobotAddress() function will return a non-null value.

	Arguments

	
	f – a function that will be called with a single boolean parameter
that indicates whether the robot is connected

	immediateNotify – If true, the function will be immediately called
with the current robot connection state

Example usage:

NetworkTables.addRobotConnectionListener(function(connected){
 console.log("Robot connected: " + connected);
}, true);

	
NetworkTables.addGlobalListener(f[, immediateNotify])

	Set a function that will be called whenever any NetworkTables value is changed

	Arguments

	
	f – When any key changes, this function will be called with the following parameters; key: key name
for entry, value: value of entry, isNew: If true, the entry has just been created

	immediateNotify – If true, the function will be immediately called
with the current value of all keys

Example usage:

NetworkTables.addGlobalListener(function(key, value, isNew){
 // do something with the values as they change
}, true);

	
NetworkTables.addKeyListener(key, f[, immediateNotify])

	Set a function that will be called whenever a value for a particular key is changed in NetworkTables

	Arguments

	
	key – A networktables key to listen for

	f – When the key changes, this function will be called with the following parameters; key: key name
for entry, value: value of entry, isNew: If true, the entry has just been created

	immediateNotify – If true, the function will be immediately called
with the current value of the specified key

Example usage:

NetworkTables.addKeyListener(function(key, value, isNew){
 // do something with the values as they change
}, true);

NetworkTables Interface

	
NetworkTables.containsKey(key)

	Use this to test whether a value is present in the table or not

	Arguments

	
	key – A networktables key

	Returns

	true if a key is present in NetworkTables, false otherwise

Warning

This may not return correct results when the websocket is not
connected

	
NetworkTables.getKeys()

	
	Returns

	all the keys in the NetworkTables

Warning

This may not return correct results when the websocket is not
connected

	
NetworkTables.getValue(key[, defaultValue])

	Returns the value that the key maps to. If the websocket is not
open, this will always return the default value specified.

	Arguments

	
	key – A networktables key

	defaultValue – If the key isn’t present in the table, return this instead

	Returns

	value of key if present, undefined or defaultValue otherwise

Warning

This may not return correct results when the websocket is not
connected

Note

To make a fully dynamic webpage that updates when the robot
updates values, it is recommended (and simpler) to use
addKeyListener() or addGlobalListener() to listen
for changes to values, instead of using this function.

	
NetworkTables.getRobotAddress()

	
	Returns

	null if the robot is not connected, or a string otherwise

	
NetworkTables.isRobotConnected()

	
	Returns

	true if the robot is connected

	
NetworkTables.isWsConnected()

	
	Returns

	true if the websocket is connected

	
NetworkTables.putValue(key)

	Sets the value in NetworkTables. If the websocket is not connected, the
value will be discarded.

	Arguments

	
	key – A networktables key

	value – The value to set (see warnings)

	Returns

	True if the websocket is open, False otherwise

Note

When you put a value, it will not be immediately available
from getValue. The value must be sent to the NetworkTables
server first, which will then send the change notification
back up to the javascript NetworkTables key/value cache.

Warning

NetworkTables is type sensitive, whereas Javascript is loosely
typed. This function will not check the type of the value
that you are trying to put, so you must be careful to only put
the correct values that are expected. If your robot tries to
retrieve the value and it is an unexpected type, an exception
will be thrown and your robot may crash. Make sure you test
your code – you have been warned.

Utility functions

	
NetworkTables.create_map()

	Creates a new empty map (or hashtable) object and returns it. The map
is safe to store NetworkTables keys in.

	Returns

	map object, with forEach/get/has/set functions defined. Simlar
to a map object when using d3.js

	
NetworkTables.keyToId(key)

	Escapes NetworkTables keys so that they’re valid HTML identifiers.

	Arguments

	
	key – A networktables key

	Returns

	Escaped value

	
NetworkTables.keySelector(key)

	Escapes special characters and returns a valid jQuery selector. Useful as
NetworkTables does not really put any limits on what keys can be used.

	Arguments

	
	key – A networktables key

	Returns

	Escaped value

For example, to set the text of an element which has an id that corresponds to
a value in NetworkTables:

$('#' + NetworkTables.keySelector(key)).text(value);

JS API: JQuery Extensions

<script src="/networktables/jquery_ext.js"></script>

Note

These functions require jQuery [http://jquery.com/] to be
loaded first!

	
$.nt_toggle(key, function)

	When a networktables variable changes, a checkbox element will be updated
when a NT variable changes and when a user clicks it.

Alternatively, you can use this with custom elements, by providing a function
that will be called only when the NT value is changed. The NT value will be
toggled when the user clicks the selected element(s).

	Arguments

	
	k – Networktables key

	fn – (optional) function that accepts a single param, will be called on change

	evt – (optional) Which event to toggle the value on (defaults to ‘click’)

Example usage:

// this works on a checkbox
$('#my_checkbox').nt_toggle('/SmartDashboard/some_boolean');

// or on a clickable element
$('#my_clickable').nt_toggle('/SmartDashboard/b', function(v) {
 this.css('background-color', v ? 'green' : 'gray');
});

JS API: Utilities

To use these functions, add this to your HTML page:

<script src="/networktables/utils.js"></script>

Note

These functions require jQuery [http://jquery.com/] and
D3 [https://d3js.org/] to be loaded first!

The functions in this file are still experimental in nature, and as we
expand the number of functions in this file it is expected that the API
will change.

SendableChooser

	
attachSelectToSendableChooser(html_id, nt_key)

	Given the id of an HTML <select> element and the key name of a SendableChooser
object setup in networktables, this will sync the select combo box with the
contents of the SendableChooser, and you will be able to select an object
using the select element.

	Arguments

	
	html_id – An ID of an HTML select element

	nt_key – The name of the NetworkTables key that the SendableChooser
is associated with

See the WPILib documentation for information on how to use SendableChooser
in your robot’s program.

	
updateSelectWithChooser(html_id, nt_key)

	This function is designed to be used from the onValueChanged callback
whenever values from a SendableChooser change, but you probably should
prefer to use attachSelectToSendableChooser instead.

See attachSelectToSendableChooser documentation.

Indicators

	
attachRobotConnectionIndicator(html_id[, size, stroke_width])

	Creates a circle SVG that turns red when robot is not connected, green when
it is connected.

	Arguments

	
	html_id – ID to insert svg into

	size – Size of circle

	stroke_width – Border of circle

JS API: Camera Integration

<script src="/networktables/camera.js"></script>

Note

These functions require jQuery [http://jquery.com/] to be
loaded first!

	
loadCameraOnConnect(args)

	This useful helper function will create an img or svg element inside of the
div element that you specify. The image will only be connected when a
successful NetworkTables connection is detected, to prevent timeout issues.
Additionally, this function will attempt to verify that the webcam server is
actually up and running before creating the image.

You should provide an object with an object that can have the following
attributes:

	Arguments

	
	container – Where to draw things

	proto – optional, defaults to http://

	host – optional, if null will use robot’s autodetected IP

	port – optional, webserver port

	image_url – path to mjpg stream

	data_url – a file or page that must exist on the webcam server

	wait_img – optional image to show when not connected

	error_img – optional image to show when not connected

	attrs – optional attributes to set on svg or img element

	nosim – if true, connect to the webcam in simulation mode

For example, to connect to mjpg-streamer on the RoboRIO:

loadCameraOnConnect({
 container: '#my_div_element',
 port: 5800,
 image_url: '/?action=stream',
 data_url: '/program.json',
 attrs: {
 width: 640,
 height: 480
 }
});

Note

This has only been tested with mjpg-streamer, but should work for
other HTTP webcams as well.

Troubleshooting

Because pynetworktables2js uses pynetworktables, if you’re having problems
getting pynetworktables2js working, you may find the
pynetworktables troubleshooting page [http://robotpy.readthedocs.io/en/stable/troubleshooting.html#pynetworktables]
to be a useful reference.

Index

 Symbols
 | A
 | L
 | N
 | U

Symbols

 	
 	$.nt_toggle() ($ method)

A

 	
 	attachRobotConnectionIndicator() (built-in function)

 	
 	attachSelectToSendableChooser() (built-in function)

L

 	
 	loadCameraOnConnect() (built-in function)

N

 	
 	NetworkTables.addGlobalListener() (NetworkTables method)

 	NetworkTables.addKeyListener() (NetworkTables method)

 	NetworkTables.addRobotConnectionListener() (NetworkTables method)

 	NetworkTables.addWsConnectionListener() (NetworkTables method)

 	NetworkTables.containsKey() (NetworkTables method)

 	NetworkTables.create_map() (NetworkTables method)

 	NetworkTables.getKeys() (NetworkTables method)

 	
 	NetworkTables.getRobotAddress() (NetworkTables method)

 	NetworkTables.getValue() (NetworkTables method)

 	NetworkTables.isRobotConnected() (NetworkTables method)

 	NetworkTables.isWsConnected() (NetworkTables method)

 	NetworkTables.keySelector() (NetworkTables method)

 	NetworkTables.keyToId() (NetworkTables method)

 	NetworkTables.putValue() (NetworkTables method)

U

 	
 	updateSelectWithChooser() (built-in function)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 pynetworktables2js

 		
 JS API: NetworkTables

 		
 Listeners

 		
 NetworkTables Interface

 		
 Utility functions

 		
 JS API: JQuery Extensions

 		
 JS API: Utilities

 		
 SendableChooser

 		
 Indicators

 		
 JS API: Camera Integration

 		
 Troubleshooting

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

