RobotPy Documentation
Release 2023

RobotPy development team

Jan 22, 2023

1 Projects

I.1 Getting Started
1.2 UpgradeNotes
1.3 Installation
1.4 Programmer’s Guide
1.5 Robot Code Frameworks
1.6 Hardware & Sensors
1.7 Camera& Vision
1.8 Troubleshooting
1.9 Support
1.10 FAQ.

1.11 Developer Documentation
2 Indices and tables

Index

ROBOT PROGRAMMING

b W W

.............................. 47

RobotPy Documentation, Release 2023

R0BOT4ED

Welcome! RobotPy is a project created by a community of FIRST mentors and students dedicated to developing
python-related projects for the FIRST Robotics Competition. This documentation site contains information about
various projects that RobotPy supports, including guides and API references.

Please read our Upgrade Notes page for things that have changed this season that you should be aware of.

Note: RobotPy is a community project and the tools we create are not officially supported by FIRST. Please see the
FAQ for more information.

We are working with the WPILib team to make Python an officially supported language in 2024. See https://wpilib.
org/blog/bringing-python-to-frc for the announcement.

ROBOT PROGRAMMING 1

https://wpilib.org/blog/bringing-python-to-frc
https://wpilib.org/blog/bringing-python-to-frc

RobotPy Documentation, Release 2023

2 ROBOT PROGRAMMING

CHAPTER
ONE

PROJECTS

The primary reason RobotPy exists is to support teams that want to write their FRC robot code using Python, and we
have several projects related to this:

* robotpy-wpilib: the python implementation of WPILib for FRC
* pyfrc: provides unit testing, realtime robot simulation, and easy upload capabilities for your RobotPy code

* roborio-packages: Various python packages for the RoboRIO platform installable by opkg, including the python
interpreter and numpy

* robotpy-wpilib-utilities: Community focused extensions for WPILib

Additionally, RobotPy is home to several projects that are useful for all teams, even if they aren’t writing their robot
code in python:

* pyntcore: python bindings for NetworkTables that you can use to communcate with a dashboard and/or your
robot.

» pynetworktables: legacy NetworkTables implementation that you can use to communcate with SmartDashboard
and/or your robot.

* pynetconsole: A simple netconsole implementation in python

* robotpy-cscore: Python bindings for cscore, a powerful camera/streaming library

* robotpy-apriltag: Python bindings for the WPILib apriltag library

e roborio-vm: Scripts to create a QEMU virtual machine from the RoboRIO image file

There is a lot of good documentation, but there’s still room for improvement. We welcome contributions from all
members of the FIRST community!

1.1 Getting Started

RobotPy WPILIb is a set of libraries that are used on your roboRIO to enable you to use Python as your main program-
ming language for FIRST Robotics robot development. It includes support for almost all components that are supported
by WPILib’s C++ implementation.

You can run RobotPy-based programs either on your computer or on a robot. There are a lot of different ways you can
get started with RobotPy, but we recommend the following steps:

e [nstall RobotPy on your computer

¢ Learn how to write Python-based robot code via Anatomy of a robot and the various sections of the programmer’s
guide

https://github.com/robotpy/robotpy-wpilib
https://github.com/robotpy/pyfrc
https://github.com/robotpy/roborio-packages
https://github.com/robotpy/robotpy-wpilib-utilities
https://github.com/robotpy/pyntcore
https://github.com/robotpy/pynetworktables
https://github.com/robotpy/pynetconsole
https://github.com/robotpy/robotpy-cscore
https://github.com/robotpy/robotpy-apriltag
https://github.com/robotpy/roborio-vm

RobotPy Documentation, Release 2023

Once you’ve played around with some code in simulation, then you should install RobotPy on your robot.

If you’re looking to use NetworkTables on the driver station or on a coprocessor, then check out the pyntcore install
docs.

1.2 Upgrade Notes

Here are major things that have changed for the 2023 season:
* See below for NT4 related changes
e cscore is much easier to build now, and we distribute wheels for Windows/Linux/macOS
* robotpy-commands is no longer supported, only commands v2

* There are two new packages: robotpy-apriltag and robotpy-wpinet

1.2.1 NetworkTables 4 (NT4)

pynetworktables will not be upgraded to support NT4. We will still fix bugs in its NT3 support, but we recommend all
users to switch to pyntcore.

pyntcore now provides a similar API to networktables, but it lives in the ntcore package now.

1.2.2 Linux specific notes

Linux requires Ubuntu 22.04 or a distribution with an equivalent (or newer) glibc installation. See linux installation
page for more information.

1.3 Installation

Writing Robot code in Python:
* If you wish to deploy code or use the Robot Simulator, see the computer Installation documentation.
* To install RobotPy on your robot, see the RobotPy installation documentation.

Using NetworkTables from Python:

* To install NetworkTables on a system that does not have RobotPy or pyfrc installed on it (such as a coprocessor
like the Raspberry Pi), see the pyntcore installation documentation.

Using cscore from Python:
* See the robotpy-cscore installation documentation.
Installing extra software packages on the RoboRIO:

* You can install third party packages such as OpenCV, NumPy, robotpy-cscore, robotpy-ctre, and other python
packages on your RoboRIO using the RobotPy Installer.

4 Chapter 1. Projects

https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore.html#module-ntcore

RobotPy Documentation, Release 2023

1.3.1 RobotPy Components

RobotPy provides a meta installation package that makes it simpler to install and upgrade RobotPy. The meta package
allows you to run pip install robotpy and this install all of the core RobotPy packages. This meta package is used
both for installation on your computer and on your robot.

Optional/Vendor Components
If you install just the robotpy package via pip, then all of the core RobotPy wrappers around WPILib will be installed.
However there are several groups of optional components that you can install. Vendor categories:
* ctre - Cross The Road Electronics motor controllers
* navx - Kauai Labs NavX MXP Robotics Navigation
* photonvision - PhotonVision computer vision vendor library
e pathplannerlib - PathPlannerLib path planning vendor library
* photonvision - PhotonVision computer vision vendor library
* rev - REV Robotics motor controllers and color sensors
Optional WPILib component categories:
* apriltag - WPILib apriltag library
e commands2 - WPILib Commands framework (2020+)
* cscore - WPILib cscore library
e romi - Romi robot specific components
e sim - WPILib extra simulation support
Install all vendors and WPILib optional components:

e all

Using components

Component categories are represented as ‘extra requirements’ for the RobotPy package. Pip allows you to install extra
requirements by putting the names of the categories in brackets.

Let’s say that you wanted to install the latest version of the NavX software along with command based programming.
You would do this

Windows

py -3 -m pip install -U robotpy[navx,commands]

1.3. Installation 5

RobotPy Documentation, Release 2023

Linux/macOS

pip3 install -U robotpy[navx,commands]

Linux ARM Coprocessor

pip3 install --find-links=https://tortall.net/~robotpy/wheels/2023/raspbian/ -U.
—robotpy[navx, commands]

Or if you wanted to install everything:

Windows

py -3 -m pip install -U robotpy[all]

Linux/macOS

pip3 install -U robotpy[all]

Linux ARM Coprocessor

pip3 install --find-links=https://tortall.net/~robotpy/wheels/2023/raspbian/ -U.
—robotpy[all]

RoboRIO vs Computer

The RobotPy meta package is used for installation on both the RoboRIO and on your computer.

1.3.2 Computer Installation

Note: installation via pip typically requires internet access

RobotPy requires Python 3.7/3.8/3.9/3.10/3.11 to be installed on your computer. We no longer support 32-bit installa-
tions of Python except on ARM coprocessors, you must have a 64-bit python installed.

* Python for Windows
* Python for macOS

Once you have installed Python, you can use pip to install RobotPy. While it is possible to install without pip, due to
the large number of dependencies this is not recommended nor is it supported.

6 Chapter 1. Projects

https://www.python.org/downloads/windows/
https://www.python.org/downloads/mac-osx/

RobotPy Documentation, Release 2023

Windows

Warning: On Windows, the Visual Studio 2019 redistributable package is required to be installed.

Run the following command from cmd or Powershell to install the core RobotPy packages:

py -3 -m pip install robotpy

See also:

This command only installs the core RobotPy packages. See additional details for installing optional/vendor compo-
nents

To upgrade, you can run this:

py -3 -m pip install --upgrade robotpy

If you don’t have administrative rights on your computer, either use virtualenv/virtualenvwrapper-win, or or you can
install to the user site-packages directory:

py -3 -m pip install --user robotpy

macOS

On a macOS system that has pip installed, just run the following command from the Terminal application (may require
admin rights):

pip3 install robotpy

See also:

This command only installs the core RobotPy packages. See additional details for installing optional/vendor compo-
nents

To upgrade, you can run this:

pip3 install --upgrade robotpy

If you don’t have administrative rights on your computer, either use virtualenv/virtualenvwrapper, or or you can install
to the user site-packages directory:

pip3 install --user robotpy

Linux

Since 2021, RobotPy distributes manylinux binary wheels on PyPI. However, installing these requires a distro that has
glibc 2.35 or newer, and an installer that implements PEP 600, such as pip 20.3 or newer. You can check your version
of pip with the following command:

pip3 --version

If you need to upgrade your version of pip, it is highly recommended to use a virtual environment.

If you have a compatible version of pip, you can simply run:

1.3. Installation 7

https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://peps.python.org/pep-0600/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

RobotPy Documentation, Release 2023

pip3 install robotpy

See also:

This command only installs the core RobotPy packages. See additional details for installing optional/vendor compo-
nents

To upgrade, you can run this:

pip3 install --upgrade robotpy

The following Linux distributions are known to work, but this list is not necessarily comprehensive:
* Ubuntu 22.04+
¢ Fedora 36+
¢ Arch Linux

If you manage to install the packages and get the following error or something similar, your system is most likely not
compatible with RobotPy:

OSError: /usr/lib/x86_64-linux-gnu/libstdc++.s0.6: version "~GLIBCXX_3.4.22' not found.
< (required by /usr/local/lib/python3.7/dist-packages/wpiutil/lib/libwpiutil.so)

source install

Alternatively, if you have a C++20 compiler installed, you may be able to use pip to install RobotPy from source.

Warning: It may take a very long time to install!

Warning: Mixing our pre-built wheels with source installs may cause runtime errors. This is due to internal ABI
incompatibility between compiler versions.

Our wheels are built on Ubuntu 22.04 with GCC 11.

If you need to build with a specific compiler version, you can specify them using the CC and CXX environment variables:

export CC=gcc-12 CXX=g++-12

Linux ARM Coprocessor

We now publish prebuilt wheels at https://tortall.net/~robotpy/wheels/2023/raspbian/, which can be downloaded by
giving the --find-1inks option to pip:

pip3 install --find-links=https://tortall.net/~robotpy/wheels/2023/raspbian/ robotpy

source install

Alternatively, if you have a C++20 compiler installed, you may be able to use pip to install RobotPy from source.

Warning: It may take a very long time to install!

8 Chapter 1. Projects

https://tortall.net/~robotpy/wheels/2023/raspbian/

RobotPy Documentation, Release 2023

Warning: Mixing our pre-built wheels with source installs may cause runtime errors. This is due to internal ABI
incompatibility between compiler versions.

Our ARM wheels are built on Ubuntu 22.04 with GCC 10.

If you need to build with a specific compiler version, you can specify them using the CC and CXX environment variables:

export CC=gcc-12 CXX=g++-12

1.3.3 Robot Installation

These instructions will help you get RobotPy installed on your RoboRIO, which will allow you to write robot code
using Python. If you install RobotPy on your RoboRIO, you are still able to deploy C++ and Java programs without
any conflicts.

Install requirements

Warning: This guide assumes that your RoboRIO has the current legal RoboRIO image installed. If you haven’t
done this yet, see the WPILib documentation for imaging instructions. To image the RoboRIO for RobotPy, you
only need to have the latest FRC Game Tools installed.

RobotPy is truly cross platform, and can be installed from Windows, most Linux distributions, and from Mac macOS
also. To install/use the installer, you must have Python 3.7+ installed. You should install the installer via pip (requires
internet access) by installing the core RobotPy components (see the computer installation section for more details).

Windows

py -3 -m pip install robotpy

Linux/macOS

pip3 install robotpy

Install process
The RoboRIO robot controller is typically not connected to a network that has internet access, so there are two stages
to installing RobotPy.

* First, you need to connect your computer to the internet and use the installer to download the packages to your
computer.

e Second, disconnect from the internet and connect to the network that the RoboRIO is on

The details for each stage will be discussed below. You can run the installer via python. This is slightly different on
Windows/macOS/Linux.

1.3. Installation 9

https://docs.wpilib.org/en/stable/docs/zero-to-robot/step-3/imaging-your-roborio.html

RobotPy Documentation, Release 2023

Install Python on a roboRIO

Note: This step only needs to be done once.

Installing Python and the RobotPy packages are separated into two different steps. Once you are connected to the
internet, you can run this to download Python for roboRIO onto your computer.

Windows

py -3 -m robotpy_installer download-python

Linux/macOS

robotpy-installer download-python

Once everything has downloaded, you can switch to your Robot’s network, and use the following commands to install.

Windows

py -3 -m robotpy_installer install-python

Linux/macOS

robotpy-installer install-python

It will ask you a few questions, and copy the right files over to your robot and set things up for you.

Installing RobotPy on a roboRIO

The RobotPy installer supports downloading wheels from PyPI and the RobotPy website and installing them on the
roboRIO. The download and install commands behave similar to the pip command, including allowing use of a
‘requirements.txt’ file if desired.

As mentioned above, installation needs to be done in two steps (download then install). Once you are connected to the
internet:

Windows

py -3 -m robotpy_installer download robotpy

10 Chapter 1. Projects

RobotPy Documentation, Release 2023

Linux/macOS

robotpy-installer download robotpy

See also:

This command only downloads the core RobotPy packages. See additional details for installing optional/vendor com-
p()I’IEI’l[S

Once everything has downloaded, you can switch to your Robot’s network, and use the following commands to install.

Windows

py -3 -m robotpy_installer install robotpy

Linux/macOS

robotpy-installer install robotpy

The robotpy installer uses pip to download and install packages, so you can replace robotpy above with the name of
a pure python package as published on PyPI.

Note: If you need Python packages that require compilation, the RobotPy project distributes some commonly used
packages. See the roborio-wheels project for more details.

1.3.4 robotpy-cscore install

RoboRIO installation

If you have robotpy-installer on your computer, then installing robotpy-cscore is very simple:

Windows

While connected to the internet
py -3 -m robotpy_installer download robotpy[cscore]

While connected to the network with a RoboRIO on it
py -3 -m robotpy_installer install robotpy[cscore]

1.3. Installation 11

https://github.com/robotpy/roborio-wheels/

RobotPy Documentation, Release 2023

Linux/macOS

While connected to the internet
robotpy-installer download robotpy[cscore]

While connected to the network with a RoboRIO on it
robotpy-installer install robotpy[cscore]

For additional details about running robotpy-installer on your computer, see the robotpy-installer documentation.

Non-roboRIO installation

We now distribute pre-built wheels for CSCore, so you can just use pip to install it:

Windows

py -3 -m pip install -U robotpy[cscore]

Linux/macOS

pip3 install -U robotpy[cscore]

ARM Coprocessor

pip3 install -U robotpy[cscore] --find-links=https://tortall.net/~robotpy/wheels/2023/
—raspbian/

Next steps

See our cscore documentation for examples and deployment thoughts.

1.3.5 Package notes

Notes specific to individual packages

pyfrc install

Installing pyfrc will install all of the packages needed to help you write and test Python-based Robot code on your
development computer. These tools include WPILib, pynetworktables, unit testing support, and the robot simulator.

It is recommended to install using the robotpy meta package:

12 Chapter 1. Projects

RobotPy Documentation, Release 2023

Windows

py -3 -m pip install robotpy

Linux/macOS

pip3 install robotpy

code coverage support

If you wish to run code coverage testing, then you must install the coverage package. It requires a compiler to install
from source. However, if you are using a supported version of Python and a modern version of pip, it may install a
binary wheel instead, which removes the need for a compiler.

Windows

py -3 -m pip install coverage

Linux/macOS

pip3 install coverage

If you run into compile errors, then you will need to install a compiler on your system.

¢ On Windows you can download the Visual Studio compilers for Python (be sure to download the one for your
version of Python).

* On macOS it requires XCode to be installed

* On Linux you will need to have python3-dev/python3-devel or a similar package installed
pyntcore install
pyntcore is a python package that allows FRC teams to use Python to communicate with their robots via NetworkTables.

It can be used on your Driver Station, on a coprocessor such as a Raspberry Pi, or any platform supported by the WPILib
team.

Note: If you’re looking for a pure python implementation of NetworkTables, check out the pynetworktables project.
It only supports NT2/NT3.

1.3. Installation 13

https://pypi.python.org/pypi/coverage
https://github.com/robotpy/pynetworktables

RobotPy Documentation, Release 2023

RoboRIO installation

pyntcore is installed as part of the core RobotPy installation.

Windows

While connected to the internet
py -3 -m robotpy_installer download robotpy

While connected to the network with a RoboRIO on it
py -3 -m robotpy_installer install robotpy

Linux/macOS

While connected to the internet
robotpy-installer download robotpy

While connected to the network with a RoboRIO on it
robotpy-installer install robotpy[cscore]

For additional details about running robotpy-installer on your computer, see the robotpy-installer documentation.

Non-roboRIO installation

Pre-built wheels of pyntcore can be installed by installing the robotpy package, or installed separately via pip (shown
below):

Windows

py -3 -m pip install -U pyntcore

Linux/macOS

pip3 install -U pyntcore

ARM Coprocessor

pip3 install -U --find-links=https://tortall.net/~robotpy/wheels/2023/raspbian/ pyntcore

14 Chapter 1. Projects

RobotPy Documentation, Release 2023

Getting Started

See the NetworkTables guide to learn more about using NetworkTables to communicate with your robot.

Commands install

The WPILib command framework is distributed separately from WPILib, and is called robotpy-commands-v2. The
instructions below discuss installing the new command framework.

Setup (tests/simulator)

If you intend to use the command framework in your robot tests or in the simulator, you must install this package locally:

Windows

py -3 -m pip install -U robotpy[commands?2]

Linux/macOS

pip3 install -U robotpy[commands2]

Setup (RoboRIO)

Even if you have robotpy-commands-v2 installed locally, you must install it on your robot separately.

Use the RobotPy installer and run the following on your computer while connected to the internet:

Windows

py -3 -m robotpy_installer download -U robotpy[commands2]

Linux/macOS

python3 -m robotpy_installer install robotpy[commands2]

For additional details about running robotpy-installer on your computer, see the robotpy-installer documentation.

1.3. Installation 15

RobotPy Documentation, Release 2023

robotpy-ctre install

Setup (tests/simulator)

If you intend to use robotpy-ctre in your robot tests or via the robot simulator, you must install this package locally. It

is recommended to install using the robotpy meta package:

Windows

py -3 -m pip install -U robotpy[ctre]

Linux/macOS

pip3 install -U robotpy[ctre]

Setup (RoboRIO)

Even if you have robotpy-ctre installed locally, you must install it on your robot separately. See below.

Python package

You really don’t want to compile this yourself, so don’t download this from pypi and install it. Use the RobotPy installer

and run the following on your computer while connected to the internet:

Windows

py -3 -m robotpy_installer download -U robotpy[ctre]

Linux/macOS

robotpy-installer download -U robotpy[ctre]

Then, when connected to the roborio’s network, run:

Windows

py -3 -m robotpy_installer install robotpy[ctre]

16

Chapter 1. Projects

RobotPy Documentation, Release 2023

Linux/macOS

robotpy-installer install robotpy[ctre]

For additional details about running robotpy-installer on your computer, see the robotpy-installer documentation.

NI Web Dashboard (optional)

CTRE Phoenix can integrate with the NI Web Dashboard on the RoboRIO. This is not required to run robotpy-ctre on
the RoboRIO, but it can be a useful diagnostic tool. To install this, you will need to use the CTRE Lifeboat tool to
install it separately.

Refer to the CTRE documentation for more details.

robotpy-navx install

Setup (tests/simulator)

If you intend to use robotpy-navx in your robot tests or via the pyfrc simulator, you must install this package locally. It
is recommended to install using the robotpy meta package:

Windows

py -3 -m pip install -U robotpy[navx]

Linux/macOS

pip3 install -U robotpy[navx]

Setup (RoboRIO)

Even if you have robotpy-navx installed locally, you must install it on your robot separately. Use the RobotPy installer
and run the following on your computer while connected to the internet:

Windows

py -3 -m robotpy_installer download -U robotpy[navx]

1.3. Installation 17

https://phoenix-documentation.readthedocs.io/en/latest/ch05_PrepWorkstation.html#workstation-installation

RobotPy Documentation, Release 2023

Linux/macOS

robotpy-installer download -U robotpy[navx]

Then, when connected to the roborio’s network, run:

Windows

py -3 -m robotpy_installer install robotpy[navx]

Linux/macOS

robotpy-installer install robotpy[navx]

For additional details about running robotpy-installer on your computer, see the robotpy-installer documentation.

robotpy-pathplannerlib install

Setup (tests/simulator)

If you intend to use robotpy-pathplannerlib in your robot tests or via the pyfrc simulator, you must install this package
locally. It is recommended to install using the robotpy meta package:

Windows

py -3 -m pip install -U robotpy[pathplannerlib]

Linux/macOS

pip3 install -U robotpy[pathplannerlib]

Setup (RoboRIO)

Even if you have robotpy-pathplannerlib installed locally, you must install it on your robot separately. See below.

Python package

You really don’t want to compile this yourself, so don’t download this from pypi and install it. Use the RobotPy installer
and run the following on your computer while connected to the internet:

18 Chapter 1. Projects

RobotPy Documentation, Release 2023

Windows

py -3 -m robotpy_installer download -U robotpy[pathplannerlib]

Linux/macOS

robotpy-installer download -U robotpy[pathplannerlib]

Then, when connected to the roborio’s network, run:

Windows

py -3 -m robotpy_installer install robotpy[pathplannerlib]

Linux/macOS

robotpy-installer install robotpy[pathplannerlib]

For additional details about running robotpy-installer on your computer, see the robotpy-installer documentation.

robotpy-photonvision install

Setup (tests/simulator)

If you intend to use robotpy-photonvision in your robot tests or via the pyfrc simulator, you must install this package
locally. It is recommended to install using the robotpy meta package:

Windows

py -3 -m pip install -U robotpy[photonvision]

Linux/macOS

pip3 install -U robotpy[photonvision]

Setup (RoboRIO)

Even if you have robotpy-photonvision installed locally, you must install it on your robot separately. See below.

1.3. Installation 19

RobotPy Documentation, Release 2023

Python package

You really don’t want to compile this yourself, so don’t download this from pypi and install it. Use the RobotPy installer
and run the following on your computer while connected to the internet:

Windows

py -3 -m robotpy_installer download -U robotpy[photonvision]

Linux/macOS

robotpy-installer download -U robotpy[photonvision]

Then, when connected to the roborio’s network, run:

Windows

py -3 -m robotpy_installer install robotpy[photonvision]

Linux/macOS

robotpy-installer install robotpy[photonvision]

For additional details about running robotpy-installer on your computer, see the robotpy-installer documentation.

robotpy-playingwithfusion install

Setup (tests/simulator)

If you intend to use robotpy-playingwithfusion in your robot tests or via the pyfrc simulator, you must install this
package locally. It is recommended to install using the robotpy meta package:

Windows

py -3 -m pip install -U robotpy[playingwithfusion]

Linux/macOS

pip3 install -U robotpy[playingwithfusion]

20 Chapter 1. Projects

RobotPy Documentation, Release 2023

Setup (RoboRIO)

Even if you have robotpy-playingwithfusion installed locally, you must install it on your robot separately. See below.

Python package

You really don’t want to compile this yourself, so don’t download this from pypi and install it. Use the RobotPy installer
and run the following on your computer while connected to the internet:

Windows

py -3 -m robotpy_installer download -U robotpy[playingwithfusion]

Linux/macOS

robotpy-installer download -U robotpy[playingwithfusion]

Then, when connected to the roborio’s network, run:

Windows

py -3 -m robotpy_installer install robotpy[playingwithfusion]

Linux/macOS

robotpy-installer install robotpy[playingwithfusion]

For additional details about running robotpy-installer on your computer, see the robotpy-installer documentation.

robotpy-rev install

Setup (tests/simulator)

If you intend to use robotpy-rev in your robot tests or via the pyfrc simulator, you must install this package locally. It
is recommended to install using the robotpy meta package:

Windows

py -3 -m pip install -U robotpy[rev]

1.3. Installation 21

RobotPy Documentation, Release 2023

Linux/macOS

pip3 install -U robotpy[rev]

Setup (RoboRIO)

Even if you have robotpy-rev installed locally, you must install it on your robot separately. See below.

Python package

You really don’t want to compile this yourself, so don’t download this from pypi and install it. Use the RobotPy installer
and run the following on your computer while connected to the internet:

Windows

py -3 -m robotpy_installer download -U robotpy[rev]

Linux/macOS

robotpy-installer download -U robotpy[rev]

Then, when connected to the roborio’s network, run:

Windows

py -3 -m robotpy_installer install robotpy[rev]

Linux/macOS

robotpy-installer install robotpy[rev]

For additional details about running robotpy-installer on your computer, see the robotpy-installer documentation.

REV Firmware and Diagnostics

robotpy-rev supports all the control features of the C++ Spark Max library. Firmware, diagnostics, and other things
must be installed separately using the tools released by REV.

Refer to the REV C++ documentation for more details.

22 Chapter 1. Projects

https://www.revrobotics.com/content/sw/max/sw-docs/cpp/index.html

RobotPy Documentation, Release 2023

RoboRIO Package Installer

Note: This is not the RobotPy installation guide, see Robot Installation if you’re looking for that!

Most FRC robots are not placed on networks that have access to the internet, particularly at competition arenas. The
RobotPy installer is designed for this type of ‘two-phase’ operation — with individual steps for downloading and in-
stalling packages separately.

The RobotPy installer supports downloading external packages from the python package repository (pypi) via pip, and
installing those packages onto the robot. We cannot make any guarantees about the quality of external packages, so use
them at your own risk.

Note: If your robot is on a network that has internet access, then you can manually install packages via opkg or pip.
However, if you use the RobotPy installer to install packages, then you can easily reinstall them on your robot in the
case you need to reimage it.

If you choose to install packages manually via pip, keep in mind that when powered off, your roboRIO does not keep
track of the correct date, and as a result pip may fail with an SSL related error message. To set the date, you can either:

¢ Set the date via the web interface

* You can login to your roboRIO via SSH, and set the date via the date command:

date -s "2015-01-03 00:00:00"

Each of the commands supports various options, which you can read about by invoking the —help command.

Installing/Executing the installer

Note: The installer is included when you install the RobotPy meta package, so if you installed that then you likely
already have it

To install/use the installer, you must have Python 3.6+ installed. You should install the installer via pip.

Windows

py -3 -m pip install robotpy-installer

Linux/macOS

pip3 install robotpy-installer

To upgrade the installed version of the installer, you need to add the -U flag to pip.

1.3. Installation 23

RobotPy Documentation, Release 2023

Executing the installer

Once you have the installer program installed, to execute the installer do:

Windows

py -3 -m robotpy_installer [command..]

Linux/macOS

robotpy-installer [command..]

Python

These commands allow you to install/upgrade Python on your roboRIO. Once Python is installed, it’s likely that you
won’t need to upgrade it.

download-python

Windows

py -3 -m robotpy_installer download-python

Linux/macOS

robotpy-installer download-python

This will update the cached Python package to the newest versions available.

install-python

Windows

py -3 -m robotpy_installer install-python

Linux/macOS

robotpy-installer install-python

Note: You must already have Python downloaded (via download-python), or this command will fail.

24 Chapter 1. Projects

RobotPy Documentation, Release 2023

Python Packages

If you want to use a python package hosted on Pypi in your robot code, these commands allow you to easily download
and install those packages.

Note: If you need Python packages that require compilation, the RobotPy project distributes some commonly used
packages. See the roborio-wheels project for more details.

download

Windows

py -3 -m robotpy_installer download PACKAGE [PACKAGE ..]

Linux/macOS

robotpy-installer download PACKAGE [PACKAGE ..]

Specify python package(s) to download, similar to what you would pass the ‘pip install’ command. This command
does not install files on the robot, and must be executed from a computer with internet access.

You can run this command multiple times, and files will not be removed from the download cache.

You can also use a requirements.txt file to specify which packages should be downloaded.

Windows

py -3 -m robotpy_installer download -r requirements.txt

Linux/macOS

robotpy-installer download -r requirements.txt

install

Windows

py -3 -m robotpy_installer install PACKAGE [PACKAGE ..]

1.3. Installation 25

https://github.com/robotpy/roborio-wheels/

RobotPy Documentation, Release 2023

Linux/macOS

robotpy-installer install PACKAGE [PACKAGE ..]

Copies python packages over to the roboRIO, and installs them. If the package already has been installed, it will be
reinstalled.

You can also use a requirements.txt file to specify which packages should be downloaded.

Windows

py -3 -m robotpy_installer install -r requirements.txt

Linux/macOS

robotpy-installer install -r requirements.txt

Warning: The ‘install’ command will only install packages that have been downloaded using the ‘download’
command, or packages that are on the robot’s pypi cache.

Warning: If your robot does not have a python3 interpeter installed, this command will fail. Run the install-python
command first.

1.4 Programmer’s Guide

* If you don’t know python very well (or at all), start with Introduction to Python

* Otherwise, start with Anatomy of a robot

1.4.1 Introduction to Python

Note: This is intended to be a very brief overview/reference of the various topics you need to master in order to
program Python. This is not an exhaustive guide to programming with python. We recommend other resources to
really learn that in-depth:

* List of various guides to learn Python
¢ CodeAcademy
e Python 3.5 Tutorial

If you want to practice some of these concepts, try out pybasictraining!

26 Chapter 1. Projects

http://docs.python-guide.org/en/latest/intro/learning/
http://www.codecademy.com/tracks/python
https://docs.python.org/3.5/tutorial/
https://github.com/virtuald/pybasictraining

RobotPy Documentation, Release 2023

Language elements

Comments

Comments are not functional and do not do anything. They are intended to be human readable things that help others
understand what the code is doing. Comments should be indented at the same level as surrounding code

This is a comment. It starts with a '# character

Indentation

All code should be indented in multiples of 4 spaces. Tab characters should be avoided. Anytime you see a : character
at the end of a line, the next line(s) should have another level of indentation. This is a visual indicator to show that the
following lines are part of a block of code associated with the previous line. For example:

this is good
if x == True:
do_something ()

this is bad and will not work
if x == True:
do_something()

Pass

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is
required syntactically, but no code needs to be executed. Most finished code will not use pass for anything.

if False:
pass

Numbers

You can use numbers in Python, and perform computations on them.

A number
1

Multiplying two numbers
2%2

1.4. Programmer’s Guide 27

RobotPy Documentation, Release 2023

Strings

Strings are groups of words that you can use as variables, and the program can manipulate them and pass them around.

"This is a string"
'This is also a string'

"This is a string that can

be extended to multiple lines"
This is also

a multiline string

'

e

mirn

Booleans

Boolean values are those that are True or False. In python, True and False always have the first letter capitalized.

Variables

Variables are used to store some information (strings, numbers, objects, etc). They can be assigned values, and referred
to later on.

x =1
X 'some value'

Control Flow

If

If statements allow you to control the flow of the program and make decisions about what the program should do next,
based on information retrieved previously. Note that the body of the if statement is indented:

if statement is True:
do_something here
elif other_statement is True:
do something lese here
else:
otherwise do this

Also see the python documentation.

Operations

Python supports various types of operations on variables and constants:

Addition
1+ 2
X + 1

Multiplication
1 * 2

(continues on next page)

28 Chapter 1. Projects

http://docs.python.org/dev/tutorial/controlflow.html#if-statements

RobotPy Documentation, Release 2023

(continued from previous page)

Equality operator (evaluated to True or False)
1 ==1
X ==1

Less than
X < 2

Lots more!

Functions

Functions are blocks of code that can be reused and are useful for grouping code. They can return a value to the caller.
The code that is contained inside of a function is not executed until you call the function.

Defintion

To define a function, you start with the word def, followed by the name of the function, and a set of parentheses:

def function_name():
"String that describes what the function does"
pass

Functions can accept input from their callers, allowing them to be reused for many purposes. You place the names of
the parameters inside the parentheses:

def function_name(parameterl, parameter2):
pass

After computing a result, you can return it to the caller. You can also return constants or variables:

def function_returns_computation(parameterl, parameter2):
return parameterl + parameter2

def function_returns_a_variable():
x =1
return x

def function_returns_a_value():
return True

1.4. Programmer’s Guide 29

RobotPy Documentation, Release 2023

Calling a function

The code that is contained inside of a function is not executed until you call the function. You call it by specifying the
name of the function, followed by parentheses:

Calling a function that takes no parameters
function_name()

If you wish to pass data to the function, you place the variable names (or constants) inside of the parentheses:

Calling a function with two constant parameters
return_value = function_name(l, 2)

Calling a function with two variables
return_value = function_name(x, y)

Classes

A collection of functions (also called methods) and variables can be put into a logical group called a ‘class’.

Definition

A class named Foo:

class Foo(object):
"String that describes the class"

def __init__(self):
"Constructor -- this function gets called when an instance is created"

store a variable in the class for use later
self.variable = 1

def method(self, parameterl, optional_parameter=None):
"A function that belongs to the Foo class. It takes
two arguments, but you can specify only one if you desire"
pass

A class named Bar

class Bar(Foo):
"This class inherits from the Foo class, so anything in
Foo is transfered (and accessible) here"

def __init__(self, parameterl):
pass

30 Chapter 1. Projects

RobotPy Documentation, Release 2023

Creating an instance

To actually use a class, you must create an instance of the class. Each instance of a class is unique, and usually operations
on the class instances do not affect other instances of the same class.

foo = Foo()

These are two separate instances of the Bar class, and operations on one
do not affect the other

barl = Bar(l)

bar2 = Bar(l)

Accessing variables stored in a class instance

x = Foo(Q) # creates an instance of Foo
y = x.variable # get the value from the instance
x.variable = 1 # set the value in the instance

Calling functions (methods) on a class instance

x = Foo(Q) # this creates an instance of Foo
x.method() # this calls the function

Loops

for

for i in a_list_of_things:
print(i)

while

while statement is True:
do_this_until_statement_is_not_true()

Exceptions

try:
do_something_that_might_cause_an_exception()
if bad_thing is True:
raise SomeException()
except ExceptionType as e:
this code is only executed if an ExceptionType exception is raised
print("Error: " + e)

(continues on next page)

1.4. Programmer’s Guide 31

RobotPy Documentation, Release 2023

(continued from previous page)

finally:
This is always executed
clean_up()

try:

import wpilib
except ImportError:
import fake_wpilib as wpilib

Future topics

* Lists, dictionaries, tuples

* Scope

Next Steps

Learn about the basic structure of Robot code at Anatomy of a robot.

1.4.2 Anatomy of a robot

Note: The following assumes you have some familiarity with python, and is meant as a primer to creating robot code
using the python version of wpilib. See our python primer for a brief introduction to the python programming language.

This tutorial will go over the things necessary for very basic robot code that can run on an FRC robot using the python
version of WPILib. Code that is written for RobotPy can be ran on your PC using various simulation tools that are
available.

Create your Robot code

Your robot code must start within a file called robot.py. Your code can do anything a normal python program can,
such as importing other python modules & packages. Here are the basic things you need to know to get your robot code
working!

Importing necessary modules

All of the code that actually interacts with your robot’s hardware is contained in a library called WPILib. This library
was originally implemented in C++ and Java. Your robot code must import this library module, and create various
objects that can be used to interface with the robot hardware.

To import wpilib, it’s just as simple as this:

import wpilib

Note: Because RobotPy implements the same WPILib as C++/Java, you can learn a lot about how to write robot code
from the many C++/Java focused WPILib resources that already exist, including FIRST’s official documentation. Just
translate the code into python.

32 Chapter 1. Projects

RobotPy Documentation, Release 2023

Robot object

Every valid robot program must define a robot object that inherits from wpilib.IterativeRobot or wpilib.

TimedRobot. These classes define a number of functions that you need to override, which get called at various times.
e wpilib.IterativeRobot functions

e wpilib.TimedRobot functions

Note: It is recommended that inexperienced programmers use the TimedRobot class, which is what this guide will
discuss.

An incomplete version of your robot object might look like this:

class MyRobot(wpilib.TimedRobot):

def robotInit(self):
self.motor = wpilib.Jaguar(l)

The robotInit function is where you initialize data that needs to be initialized when your robot first starts. Examples
of this data includes:

* Variables that are used in multiple functions
* Creating various wpilib objects for devices and sensors
* Creating instances of other objects for your robot

In python, the constructor for an object is the __init__ function. Instead of defining a constructor for your main robot
object, you can override robotlnit instead. If you do decide that you want to override __init__, then you must call
super().__init__() in your __init__ method, or an exception will be thrown.

—

Adding motors and sensors

Everything that interacts with the robot hardware directly must use the wpilib library to do so. Starting in 2015,
full documentation for the python version of WPILib is published online. Check out the API documentation (wpilib
Package) for details on all the objects available in WPILib.

Note: You should only create instances of your motors and other WPILib hardware devices (Gyros, Joysticks, Sensors,
etc) either during or after robotlnit is called on your main robot object. If you don’t, there are a lot of things that will
fail.

Creating individual devices

Let’s say you wanted to create an object that interacted with a Jaguar motor controller via PWM. First, you would
read through the table (wpilib Package) and see that there is a Jaguar object. Looking further, you can see that the
constructor takes a single argument that indicates which PWM port to connect to. You could create the Jaguar object
that is using port 4 using the following python code in your robotInit method:

self.motor = wpilib.Jaguar(4)

1.4. Programmer’s Guide 33

https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib/TimedRobot.html#wpilib.TimedRobot
https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib/TimedRobot.html#wpilib.TimedRobot
https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib/TimedRobot.html#wpilib.TimedRobot
https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib.html
https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib.html
https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib.html

RobotPy Documentation, Release 2023

Looking through the documentation some more, you would notice that to set the PWM value of the motor, you need to
call the Jaguar.set () function. The docs say that the value needs to be between -1.0 and 1.0, so to set the motor full
speed forward you could do this:

self.motor.set(1)

Other motors and sensors have similar conventions.

Robot drivetrain control

For standard types of drivetrains (2 or 4 wheel, mecanum, kiwi), you’ll want to use the various included class to control
the motors instead of writing your own code to do it. For most standard drivetrains, you’ll want to use one of three
classes:

e wpilib.drive.DifferentialDrive for differential drive/skid-steer drive platforms such as 2 or 4 wheel plat-
forms, the Kit of Parts drive base, “tank drive”, or West Coast Drive.

e wpilib.drive.KilloughDrive for Killough (Kiwi) triangular drive platforms.
e wpilib.drive.MecanumDrive for mecanum drive platforms.

For example, when you create a wpilib.drive.DifferentialDrive object, you can pass in motor controller in-
stances:

1_motor = wpilib.Talon(0)
r_motor = wpilib.Talon(1)
self.robot_drive = wpilib.drive.DifferentialDrive(l_motor, r_motor)

Or you can pass in motor controller groups to use more than one controller per side:

self.frontLeft = wpilib.Spark(1l)
self.rearLeft = wpilib.Spark(2)
self.left = wpilib.SpeedControllerGroup(self.frontLeft, self.rearLeft)

self.frontRight = wpilib.Spark(3)
self.rearRight = wpilib.Spark(4)
self.right = wpilib.SpeedControllerGroup(self.frontRight, self.rearRight)

self.drive = wpilib.drive.DifferentialDrive(self.left, self.right)

Once you have one of these objects, it has various methods that you can use to control the robot via joystick, or you can
specify the control inputs manually.

See also:

Documentation for the wpilib.drive Package, and the FIRST WPILib Programming Guide.

34 Chapter 1. Projects

https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib.drive/DifferentialDrive.html#wpilib.drive.DifferentialDrive
https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib.drive/MecanumDrive.html#wpilib.drive.MecanumDrive
https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib.drive/DifferentialDrive.html#wpilib.drive.DifferentialDrive
https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib.drive.html

RobotPy Documentation, Release 2023

Robot Operating Modes (TimedRobot)
During a competition, the robot transitions into various modes depending on the state of the game. During each mode,
functions on your robot class are called. The name of the function varies based on which mode the robot is in:

* disabledXXX - Called when robot is disabled

* autonomousXXX - Called when robot is in autonomous mode

* teleopXXX - Called when the robot is in teleoperated mode

* testXXX - Called when the robot is in test mode

Each mode has two functions associated with it. xxxInit is called when the robot first switches over to the mode, and
xxxPeriodic is called 50 times a second (approximately — it’s actually called as packets are received from the driver
station).

For example, a simple robot that just drives the robot using a single joystick might have a teleopPeriodic function that
looks like this:

def teleopPeriodic(self):
self.robot_drive.arcadeDrive(self.stick)

This function gets called over and over again (about 50 times per second) while the robot remains in teleoperated mode.

Warning: When using the TimedRobot as your Robot class, you should avoid doing the following operations in
the xxxPeriodic functions or functions that have xxxPeriodic in the call stack:

e Never use time.sleep() as you will momentarily lose control of your robot during the delay, and it will not
be as responsive.

* Avoid using loops, as unexpected conditions may cause you to lose control of your robot.

Main block

Languages such as Java require you to define a ‘static main’ function. In python, because every .py file is usable from
other python programs, you need to define a code block which checks for __main__. Inside your main block, you tell
WPILIb to launch your robot’s code using the following invocation:

if __name__ == '__main_

wpilib.run(MyRobot)

This simple invocation is sufficient for launching your robot code on the robot, and also provides access to various
RobotPy-enabled extensions that may be available for testing your robot code, such as pyfrc and robotpy-frcsim.

Putting it all together

If you combine all the pieces above, you end up with something like this below, taken from one of the samples in our
github repository:

#!/usr/bin/env python3

e

This is a good foundation to build your robot code on

o

(continues on next page)

1.4. Programmer’s Guide 35

http://effbot.org/pyfaq/tutor-what-is-if-name-main-for.htm

RobotPy Documentation, Release 2023

(continued from previous page)

import wpilib
import wpilib.drive

class MyRobot(wpilib.TimedRobot):

def robotInit(self):
This function is called upon program startup and
should be used for any initialization code.
self.left_motor = wpilib.Spark(0)
self.right_motor = wpilib.Spark(1)
self.drive = wpilib.drive.DifferentialDrive(self.left_motor, self.right_motor)
self.stick = wpilib.Joystick(1)
self.timer = wpilib.Timer()

def autonomousInit(self):
"""This function is run once each time the robot enters autonomous mode.
self.timer.reset()
self.timer.start()

o

def autonomousPeriodic(self):
"""This function is called periodically during autonomous."""
Drive for two seconds
if self.timer.get() < 2.0:
self.drive.arcadeDrive(-0.5, 0) # Drive forwards at half speed
else:
self.drive.arcadeDrive(0®, 0) # Stop robot

def teleopPeriodic(self):
"""This function is called periodically during operator control."""
self.drive.arcadeDrive(self.stick.getY(), self.stick.getX())

if _name__ == "__main__":
wpilib.run(MyRobot)

There are a few different python-based robot samples available, and you can find them in our github examples repository.
See also:

RobotPy comes with various frameworks that make it easier to create your robot code. See the page on Robor Code
Frameworks.

36 Chapter 1. Projects

https://github.com/robotpy/examples

RobotPy Documentation, Release 2023

Next Steps

This is a good foundation for building your robot, next you will probably want to know about Running robot code.

1.4.3 Running robot code

Now that you’ve created your first Python robot program, you probably want to know how to run the code. The process
to run a python script is slightly different for each operating system.

Note: This section assumes that you’ve already installed pyfrc. If you haven’t, now’s a great time to do so!

How to execute the script
Windows

On Windows, you will typically execute your robot code by opening up the command prompt (cmd), changing direc-
tories to where your robot code is, and then running this:

py -3 robot.py

Linux/macOS

On Linux/macOS, you will typically execute your robot code by opening up the Terminal program, changing directories
to where your robot code is, and then running this:

python3 robot.py

Commands
When you run your code without additional arguments, you’ll see an error message saying something like robot.py:

error: the following arguments are required: command. RobotPy tools install various commands that
you can run from your robot code. To discover the various features that are installed, you can use the --help command:

Windows

py -3 robot.py --help

Linux/macOS

python3 robot.py --help

Note: RobotPy supports an extension mechanism that allows advanced users the ability to create their own custom
robot.py commandline options. For more information, see Adding options to robot.py

1.4. Programmer’s Guide 37

RobotPy Documentation, Release 2023

Next steps

There are two ways you can run the code: on the robot, and on the simulator:
* Deploying to the robot

e Robot Simulator

Note: If you're just starting out with RobotPy, you’ll probably find it faster (and more instructive) to start playing with
your code in the simulator before you actually deploy it to a robot.

1.4.4 Deploying to the robot

» Immediate feedback via Netconsole
» Skipping Tests
e Starting deployed code at boot

* Manually deploying code

* Next Steps

The easiest way to install code on the robot is to use the deploy command provided by pyfrc. This command will first
run any unit tests on your robot code, and if they pass then it will upload the robot code to the roboRIO. Running the
tests is really important, it allows you to catch errors in your code before you run it on the robot.

1. Make sure you have RobotPy installed on the robot (RobotPy install guide)
2. Make sure you have pyfrc installed (pyfrc install guide)

3. Once that is done, you can just run the following command and it will upload the code and start it immediately.

Windows

py -3 robot.py deploy

Linux/macOS

python3 robot.py deploy

You can watch your robot code’s output (and see any problems) by using the netconsole program (you can either use
NTI’s tool, or pynetconsole. You can use netconsole and the normal FRC tools to interact with the running robot code.

If you’re having problems deploying code to the robot, check out the rroubleshooting section

38 Chapter 1. Projects

https://github.com/robotpy/pynetconsole

RobotPy Documentation, Release 2023

Immediate feedback via Netconsole

Note that when you run the deploy command like that, you won’t get any feedback from the robot whether your code
actually worked or not. If you want to see the feedback from your robot without launching a separate NetConsole
window, a really useful option is --nc. This will cause the deploy command to show your program’s console output,
by launching a netconsole listener.

Windows

py -3 robot.py deploy --nc

Linux/macOS

python3 robot.py deploy --nc

Note: This requires the driver station software to be connected to your robot

Skipping Tests

Now perhaps your tests are failing, but you really need to upload the code, and don’t care about the tests. That’s OK,
you can still upload code to the robot:

Windows

py -3 robot.py deploy --skip-tests

Linux/macOS

python3 robot.py deploy --skip-tests

Starting deployed code at boot

If you wish for the deployed code to be started up when the roboRIO boots up, you need to make sure that “Disable RT
Startup App” is not checked in the roboRIO’s web configuration. See the FIRST documentation for more information.

1.4. Programmer’s Guide 39

https://docs.wpilib.org/en/stable/docs/software/roborio-info/roborio-web-dashboard.html

RobotPy Documentation, Release 2023

Manually deploying code

Generally, you you just use the steps above. However, if you really want to, then see Deploy Artifacts.

Next Steps

Let’s talk about the robot simulator next.

1.4.5 Robot Simulator
An important (but often neglected) part of developing your robot code is to test it! Because we feel strongly about testing
and simulation, the RobotPy project provides tools to make those types of things easier through the pyfrc project. From

2014-2019, RobotPy provided its own simulation GUI. Starting in 2020, RobotPy uses the WPILib simulation GUI
instead.

Running the simulator

To run the GUI simulator, run your robot.py with the following arguments:

Windows

py -3 robot.py sim

Linux/macOS

python3 robot.py sim

User interface

See the WPILib Simulation User Interface documentation for more details.

2D Field Widget and Physics

The WPILib Simulation GUI has a 2D field available, just like the original PyFRC simulator had. This allows you
to drive your robot around on a virtual field — in particular, it’s very useful for testing the logic of autonomous mode
movements.

Note: To enable the field view, go to the “‘Window’ menu, and select 2D field view.

For the robot to move across the field, you must implement a physics module (it’s a lot easier than it sounds!). Helper
functions are provided to calculate robot position for common drivetrain types.

We have a variety of examples and documentation available:
* PyFRC API docs
 wpilib.simulation Package

* RobotPy Examples Repository

40 Chapter 1. Projects

https://github.com/robotpy/pyfrc
https://docs.wpilib.org/en/stable/docs/software/wpilib-tools/robot-simulation/simulation-gui.html
https://robotpy.readthedocs.io/projects/pyfrc/en/stable/physics.html#physics-model
https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib.simulation.html
https://github.com/robotpy/examples

RobotPy Documentation, Release 2023

Communicating via NetworkTables

The simulator launches a NetworkTables server (just as the robot does), so it can be communicated with via standard
NetworkTables tools (such as OutlineViewer, Shuffleboard, or SmartDashboard).

For this to work, you need to tell the client to connect to the IP address that your simulator is listening on (this will be
localhost or 127.0.0.1).

pynetworktables2js

pynetworktables2js will automatically connect to localhost if no arguments are given.

OutlineViewer

You can type an address in when OutlineViewer launches, then tell it to start in client mode.

Shuffleboard

Shuffleboard can be configured to connect to localhost in the preferences.

SmartDashboard

Using SmartDashboard, you need to launch the jar using the following command:

$ java -jar SmartDashboard.jar ip 127.0.0.1

Next Steps

The next section discusses a very important part of writing robot code — Unit testing robot code.

1.4.6 Unit testing robot code

Warning: Testing is currently still broken, but expected to be available later in the 2022 season

pyfrc comes with robot.py extensions that support testing robot code using the py.test python testing tool. To run the
unit tests for your robot, just run your robot.py with the following arguments:

1.4. Programmer’s Guide 41

RobotPy Documentation, Release 2023

Windows

py -3 robot.py test

Linux/macOS

python3 robot.py test

Your tests must be in a directory called ‘tests’ either next to robot.py, or in the directory above where robot.py resides.
See ‘samples/simple’ for an example test program that starts the robot code and runs it through autonomous mode and
operator mode.

Builtin unit tests
pyfrc comes with testing functions that can be used to test basic functionality of just about any robot, including running

through a simulated practice match. As of pyfrc 2016.1.1, to add these standardized tests to your robot code, you can
run the following:

Windows

py -3 robot.py add-tests

Linux/macOS

python3 robot.py add-tests

Running this command creates a directory called ‘tests’ if it doesn’t already exist, and then creates a file in your tests
directory called pyfrc_test.py, and put the following contents in the file:

from pyfrc.tests import *

Unlike previous years, all tests work on all types of robots now.

As of pyfrc 2015.0.2, the --builtin option allows you to run the builtin tests without needing to create a tests directory.
Writing your own test functions
Often it’s useful to create custom tests to test specific things that the generic tests aren’t able to test. When running a

test, py.test will look for functions in your test modules that start with ‘test_’. Each of these functions will be ran, and
if any errors occur the tests will fails. A simple test function might look like this:

def two_plus(arg):
return 2 + arg

def test_addition():
assert two_plus(2) ==

42 Chapter 1. Projects

RobotPy Documentation, Release 2023

The assert keyword can be used to test whether something is True or False, and if the condition is False, the test will
fail.

Pytest supports something called a ‘fixture’, which allows you to add an argument to your test function and it will call
the fixture and pass the result to your test function as that argument. pyfrc has a custom pytest plugin that it uses to
provide this special functionality to your tests.

For more information:
* RobotPy example code

* py.test documentation

Code coverage for tests

pyfrc supports measuring code coverage using the coverage.py module. This feature can be used with any robot.py
commands and provide coverage information.

For example, to run the ‘test’ command to run unit tests:

Windows

py -3 robot.py coverage test

Linux/macOS

python3 robot.py coverage test

Or to run coverage over the simulator:

Windows

py -3 robot.py coverage sim

Linux/macOS

python3 robot.py coverage sim

Running code coverage while the simulator is running is nice, because you don’t have to write unit tests to make sure
that you’ve completely covered your code. Of course, you should write unit tests anyways... but this is good for
developing code that needs to be run on the robot quickly and you need to make sure that you tested everything first.

When using the code coverage feature, what actually happens is robot.py gets executed again, except this time it is
executed using the coverage module. This allows coverage.py to completely track code coverage, otherwise any modules
that are imported by robot.py (and much of robot.py itself) would not be reported as covered.

Note: There is a py.test module called pytest-cov that is supposed to allow you to run code coverage tests. However,
I’ve found that it doesn’t work particularly well for me, and doesn’t appear to be maintained anymore.

1.4. Programmer’s Guide 43

https://github.com/robotpy/examples
http://pytest.org/latest/example/index.html
http://nedbatchelder.com/code/coverage/

RobotPy Documentation, Release 2023

Note: For some reason, when running the simulation under the code coverage tool, the output is buffered until the
process exits. This does not happen under py.test, however. It’s not clear why this occurs.

Next Steps

Learn more about some Best Practices when creating robot code.

1.4.7 Best Practices

This section has a selection of things that other teams have found to be good things to keep in mind to build robot code
that works consistently, and to eliminate possible failures.

* Make sure you're running the latest version of RobotPy!
* Don’t use the print statement/logger excessively

* Don'’t die during the competition!

* Consider using a robot framework

If you have things to add to this section, feel free to submit a pull request!

Make sure you’re running the latest version of RobotPy!

Seriously. We try to fix bugs as we find them, and if you haven’t updated recently, check to see if you're out of date!
This is particularly true during build season.

Don’t use the print statement/logger excessively

Printing output can easily take up a large proportion of your robot code CPU usage if you do it often enough. Try to
limit the amount of things that you print, and your robot will perform better.

Instead, you may want to use this pattern to only print once every half second (or whatever arbitrary period):

Put this in robotInit
self.printTimer = wpilib.Timer()
self.printTimer.start()

Put this where you want to print
if self.printTimer.hasPeriodPassed(0.5):
self.logger.info("Something happened™)

Remember, during a competition you can’t actually see the output of Netconsole (it gets blocked by the field network),
so there’s not much point in using these except for diagnostics off the field. In a competition, disable it.

44 Chapter 1. Projects

RobotPy Documentation, Release 2023

Don’t die during the competition!

If you’ve done any amount of programming in python, you’ll notice that it’s really easy to crash your robot code — all
you need to do is mistype something and BOOM you’re done. When python encounters errors (or components such as
WPILIib or HAL), then what happens is an exception is raised.

Note: If you don’t know what exceptions are and how to deal with them, you should read this

There’s a lot of things that can cause your program to crash, and generally the best way to make sure that it doesn’t
crash is test your code. RobotPy provides some great tools to allow you to simulate your code, and to write unit tests
that make sure your code actually works. Whenever you deploy your code using pyfrc, it tries to run your robot code’s
tests — and this is to try and prevent you from uploading code that will fail on the robot.

However, invariably even with all of the testing you do, something will go wrong during that really critical match, and
your code will crash. No fun. Luckily, there’s a good technique you can use to help prevent that!

What you need to do is set up a generic exception handler that will catch exceptions, and then if you detect that the
FMS is attached (which is only true when you’re in an actual match), just continue on instead of crashing the code.

Note: Most of the time when you write code, you never want to create generic exception handlers, but you should try
to catch specific exceptions. However, this is a special case and we actually do want to catch all exceptions.

Here’s what I mean:

try:
some code goes here
except:
if not self.isFmsAttached():
raise

What this does is run some code, and if an exception occurs in that code block, and the FMS is connected, then execution
just continues and hopefully everything continues working. However (and this is important), if the FMS is not attached
(like in a practice match), then the raise keyword tells python to raise the exception anyways, which will most likely
crash your robot. But this is good in practice mode — if your driver station is attached, the error and a stack trace should
show up in the driver station log, so you can debug the problem.

Now, a naive implementation would just put all of your code inside of a single exception handler — but that’s a bad idea.
What we’re trying to do is make sure that failures in a single part of your robot don’t cause the rest of your robot code
to not function. What we generally try to do is put each logical piece of code in the main robot loop (teleopPeriodic)
in its own exception handler, so that failures are localized to specific subsystems of the robot.

With these thoughts in mind, here’s an example of what I mean:

def teleopPeriodic(self):

try:
if self.joystick.getTrigger():
self.arm.raise_arm()
except:
if not self.isFmsAttached():
raise

try:

(continues on next page)

1.4. Programmer’s Guide 45

https://docs.python.org/3.5/tutorial/errors.html

RobotPy Documentation, Release 2023

(continued from previous page)

if self.joystick.getRawButton(2):
self.ball_intake. ()
except:
if not self.isFmsAttached():
raise

and so on...

try:
self.robot_drive.arcadeDrive(self. joystick)
except:
if not self.isFmsAttached():
raise

Note: In particular, [always recommend making sure that the call to your robot’s drive function is in it’s own exception
handler, so even if everything else in the robot dies, at least you can still drive around.

Consider using a robot framework

If you’re creating anything more than a simple robot, you may find it easier to use a robot framework to help you
organize your code and take care of some of the boring details for you. While frameworks sometimes have a learning
curve associated with them, once you learn how they work you will find that they can save you a lot of effort and prevent
you from making certain kinds of mistakes.

See our documentation on Robot Code Frameworks

1.4.8 Using NetworkTables

NetworkTables is a communications protocol used in FIRST Robotics. It provides a simple to use mechanism for
communicating information between several computers. There is a single server (typically your robot) and zero or
more clients. These clients can be on the driver station, a coprocessor, or anything else on the robot’s local control
network.

* Robot Configuration

* Resources

Robot Configuration

Note: These notes apply to all languages that use NetworkTables, not just Python

FIRST introduced the mDNS based addressing for the RoboRIO in 2015, and generally teams that use additional devices
have found that while it works at home and sometimes in the pits, it tends to not work correctly on the field at events.
For this reason, if you use NetworkTables on the field, we strongly encourage teams to ensure every device has a static
IP address.

e Static IPs are 10.XX.XX.2

46 Chapter 1. Projects

RobotPy Documentation, Release 2023

¢ mDNS Hostnames are roborio-XXXX-frc.local (don’t use these!)
For example, if your team number was 1234, then the static IP to connect to would be 10.12.34.2.

For information on configuring your RoboRIO and other devices to use static IPs, see the WPILib documentation.

Resources

» Networktables concepts and documentation
e pyntcore installation
e NTCore API Reference

* NetworkTables troubleshooting

1.4.9 Example Code

Sometimes the documentation just isn’t enough. To help you get started, the RobotPy project provides many example
programs that can be a good starting point.

* Robot Code examples

* RobotPy CSCore examples

1.5 Robot Code Frameworks

After creating code for a few robots, you’ll notice that there are a lot of similarities between the code. Robot code
frameworks are a collection of patterns and ideas that are generally useful for creating robot code.

While frameworks sometimes have a learning curve associated with them, once you learn how they work you will find
that they can save you a lot of effort and prevent you from making certain kinds of mistakes.

e Command Framework: this framework comes with WPILib

* MagicBot Framework: Created as a pythonic alternative to the Command framework

1.5.1 Command Framework

If you’re coming from C++ or Java, you are probably familiar with the Command based robot paradigm. All of the
pieces you’re used to are still available in RobotPy.

Note: Unfortunately, nobody has written any Python specific documentation for the new command framework. Please
refer to the WPILib documentation for now.

If you’re interested in contributing a Python-specific guide to the command framework, we’d love your help!

See also:
Commands V2 API
See also:

MagicBot Framework

1.5. Robot Code Frameworks 47

https://docs.wpilib.org/en/stable/docs/networking/networking-introduction/ip-configurations.html
https://docs.wpilib.org/en/stable/docs/software/networktables/index.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/api.html#ntcore-api
https://github.com/robotpy/examples
https://github.com/robotpy/robotpy-cscore/tree/main/examples
https://docs.wpilib.org/en/stable/docs/software/commandbased/index.html
https://robotpy.readthedocs.io/projects/commands-v2/en/stable/api.html#command-v2-api

RobotPy Documentation, Release 2023

1.5.2 MagicBot Framework

MagicBot is an opinionated framework for creating Python robot programs for the FIRST Robotics Competition. It is
envisioned to be an easier to use pythonic alternative to the Command framework, and has been used by championship
caliber teams to power their robots.

While MagicBot will tend to be more useful for complex multi-module programs, it does remove some of the boilerplate
associated with simple programs as well.

Philosophy

You should use the MagicRobot class as your base robot class. You’ll note that it’s similar to TimedRobot:

import magicbot
import wpilib

class MyRobot(magicbot.MagicRobot):
def createObjects(self):
"Create motors and stuff here"

pass

def teleopInit(self):
"Called when teleop starts; optional

def teleopPeriodic(self):
"Called on each iteration of the control loop"

if __name__ == '__main__"':
wpilib.run(MyRobot)

A robot control program can be divided into several logical parts (think drivetrain, forklift, elevator, etc). We refer to
these parts as “Components”.

Components

When you design your robot code, you should define each of the components of your robot and order them in a hierarchy,
with “low level” components at the bottom and “high level” components at the top.

* “Low level” components are those that directly interact with physical hardware: drivetrain, elevator, grabber

* “High level” components are those that only interact with other components: these are generally automatic
behaviors or encapsulation of multiple low level components into an easier to use component

Generally speaking, components should never interact with operator controls such as joysticks. This allows the com-
ponents to be used in autonomous mode and in teleoperated mode.

Components should have three types of methods (excluding internal methods):
* Control methods
¢ Informational methods
* An execute method

Control methods

48 Chapter 1. Projects

https://robotpy.readthedocs.io/projects/utilities/en/stable/magicbot.html#magicbot.magicrobot.MagicRobot
https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib/TimedRobot.html#wpilib.TimedRobot

RobotPy Documentation, Release 2023

Think of these as ‘verb’ functions. In other words, calling one of these means that you want that particular thing to
happen.

Control methods store information necessary to perform a desired action, but do not actually execute the action.
They are generally called either from teleopPeriodic, another component’s control method, or from an autonomous
mode.

Example method names: raise_arm, lower_arm, shoot
Informational methods

These are basic methods that tell something about a component. They are typically called from control methods, but
may be called from execute as well.

Example method names: is_arm_lowered, ready_to_shoot
execute method

The execute method reads the data stored by the control methods, and then sends data to output devices such as motors
to execute the action. You should not call the execute function as execute is automatically called by MagicRobot if
you define it as a magic component.

Component creation

Components are instantiated by the MagicRobot class. You can tell the MagicRobot class to create magic components
by annotating the variable names and types in your MyRobot class.

from components import Elevator, Forklift

class MyRobot(MagicRobot):
elevator: Elevator
forklift: Forklift

def teleopPeriodic(self):
self.elevator is now an instance of Elevator

Variable injection

To reduce boilerplate associated with passing components around, and to enhance autocomplete for PyDev, MagicRobot
can inject variables defined in your robot class into other components, and autonomous modes. Check out this example:

class MyRobot(MagicRobot):
elevator: Elevator

def createObjects(self):
self.elevator_motor = wpilib.Talon(2)
class Elevator:

elevator_motor: wpilib.Talon

def execute(self):
self.elevator_motor is a reference to the Talon instance

(continues on next page)

1.5. Robot Code Frameworks 49

https://robotpy.readthedocs.io/projects/utilities/en/stable/magicbot.html#magicbot.magicrobot.MagicRobot

RobotPy Documentation, Release 2023

(continued from previous page)

created in MyRobot.createObjects

As you may be able to infer, by declaring in your Elevator class an annotation that matches an attribute in your Robot
class, Magicbot automatically notices this and adds an attribute in your component with the instance as defined in your
robot class.

Sometimes, it’s useful to use multiple instances of the same class. You can inject into unique instances by prefixing
variable names with the component variable name:

class MyRobot(MagicRobot):
front_swerve: SwerveModule
back_swerve: SwerveModule

def createObjects(self):
this is injected into the front_swerve instance of SwervelModule as motor’
self.front_swerve_motor = wpilib.Talon(1)

this is injected into the back_swerve instance of SwerveModule as 'motor’

self.back_swerve_motor = wpilib.Talon(2)

class SwervelModule:
motor: wpilib.Talon

One problem that sometimes comes up is your component may require a lot of configuration parameters. Remember,
anything can be injected: integers, numbers, lists, tuples.... one suggestion for dealing with this problem is use a
namedtuple to store your variables (note that attributes of namedtuple are readonly):

from collections import namedtuple

ShooterConfig = namedtuple("ShooterConfig", ["paraml", "param2", "param3"])

class MyRobot(MagicRobot):

shooter: Shooter

shooter_cfg = ShooterConfig(paraml=1, param2=2, param3=3)
class Shooter:

cfg: ShooterConfig

def execute(self):
you can access self.cfg.paraml, self.cfg.param2, etc...

Variable injection in magicbot is one of its most useful features, take advantage of it in creative ways!

Note: Some limitations to notice:
* You cannot access components from the createObjects function

* You cannot access injected variables from component constructors. If you need to do this, define a setup method

50 Chapter 1. Projects

RobotPy Documentation, Release 2023

for your component instead, and it will be called after variables have been injected.

Operator Control code

Code that controls components should go in the teleopPeriodic method. This is really the only place that you should
generally interact with a Joystick or NetworkTables variable that directly triggers an action to happen.

To ensure that a single portion of robot code cannot bring down your entire robot program during a competition,
MagicRobot provides an onException method that will either swallow the exception and report it to the Driver Station,
or if not connected to the FMS will crash the robot so that you can inspect the error:

try:
if self.joystick.getTrigger():
self.component.doSomething()
except:
self.onException()

MagicRobot also provides a consumeExceptions method that you can wrap your code with using a with statement
instead:

with self.consumeExceptions():
if self.joystick.getTrigger():
self.component.doSomething()

Note: Most of the time when you write code, you never want to create generic exception handlers, but you should try
to catch specific exceptions. However, this is a special case and we actually do want to catch all exceptions.

See also:

RobotPy Guidelines

Autonomous mode
MagicBot supports loading multiple autonomous modes from a python package called ‘autonomous’. To create this
package, you must:

* Create a folder called ‘autonomous’ in the same directory as robot.py

¢ Add an empty file called ‘__init__.py’ to that folder

Any .py files that you add to the autonomous package will automatically be loaded at robot startup. Each class that is
in the python module will be inspected, and added as an autonomous mode if it has a class attribute named MODE_NAME.

Autonomous mode objects must implement the following functions:

* on_enable - Called when autonomous mode is initially enabled

e on_disable - Called when autonomous mode is no longer active

e on_iteration - Called for each iteration of the autonomous control loop
Your autonomous object may have the following attributes:

¢ MODE_NAME - The name of the autonomous mode to display to users (required)

e DISABLED - If True, don’t allow this mode to be selected

1.5. Robot Code Frameworks 51

RobotPy Documentation, Release 2023

e DEFAULT - If True, this is the default autonomous mode selected

You cannot access injected variables from component constructors. If you need to do so you can implement a setup
function, which will be called after variables have been injected.

If you build your autonomous mode using the AutonomousStateMachine class, it makes it easier to build more
expressive autonomous modes that are easier to reason about.

Here’s an example autonomous mode that drives straight for 3 seconds.

from magicbot import AutonomousStateMachine, timed_state, state
import wpilib

this is one of your components
from components.drivetrain import DriveTrain

class DriveForward(AutonomousStateMachine) :

MODE_NAME = "Drive Forward"
DEFAULT = True

Injected from the definition in robot.py
drivetrain: DriveTrain

@timed_state(duration=3, first=True)
def drive_forward(self):
self.drivetrain.move(-0.7, 0)

Note that the AutonomousStateMachine object already defines default on_enable/on_disable/on_iteration
methods that do the right thing.

Dashboard & coprocessor communications

The simplest method to communicate with other programs external to your robot code (examples include dashboards
and image processing code) is using NetworkTables. NetworkTables is a distributed keystore, or put more simply, it is
similar to a python dictionary that is shared across multiple processes.

Note: For more information about NetworkTables, see Using NetworkTables

Magicbot provides a simple way to interact with NetworkTables, using the tunable property. It provides a python
property that has get/set functions that read and write from NetworkTables. The NetworkTables key is automatically
determined by the name of your object instance and the name of the attribute that the tunable is assigned to.

In the following example, this would create a NetworkTables variable called /components/mine/foo, and assign it a
default value of 1.0:

class MyComponent:

foo = tunable(default=1.0)

(continues on next page)

52 Chapter 1. Projects

https://robotpy.readthedocs.io/projects/utilities/en/stable/magicbot.html#magicbot.state_machine.AutonomousStateMachine

RobotPy Documentation, Release 2023

(continued from previous page)

class MyRobot:
mine: MyComponent

To access the variable, in MyComponent you can read or write self. foo and it will read/write to NetworkTables.
For more information about creating custom dashboards, see the following:
* pynetworktables2js docs

¢ Shuffleboard docs

Example Components

Low level components

Low level components are those that directly interact with hardware. Generally, these should not be stateful but should
express simple actions that cause the component to do whatever it is in a simple way, so when it doesn’t work you can
bypass any automation and more easily test the component.

Here’s an example single-wheel shooter component:

class Shooter:
shooter_motor: wpilib.Talon

speed is tunable via NetworkTables
shoot_speed = tunable(l1.0)

def __init__(self):
self.enabled = False

def enable(self):
"Causes the shooter motor to spin"
self.enabled = True

def is_ready(self):
in a real robot, you'd be using an encoder to determine if the
shooter were at the right speed..
return True

def execute(self):
"This gets called at the end of the control loop"
if self.enabled:
self.shooter_motor.set(self.shoot_speed)
else:
self.shooter_motor.set(0)

self.enabled = False

Now, this is useful, but you’ll note that it’s not particularly smart. It just makes the component work. Which is great —
very easy to debug. Let’s automate some stuff now.

1.5. Robot Code Frameworks 53

http://pynetworktables2js.readthedocs.io/en/latest/
https://docs.wpilib.org/en/stable/docs/software/dashboards/shuffleboard/index.html

RobotPy Documentation, Release 2023

High level components

High level components are those that control other components to automate one or more of them for automated be-
haviors. Consider the example of the Shooter component above — let’s say that you have some intake component that
needs to feed a ball into the shooter when the shooter is ready. At that point, you're ready for high level components!
First, let’s just define what the low-level intake interface is:

¢ Has a function ‘feed_shooter’ which will send the ball to the shooter

Let’s automate these two using a state machine helper:

from magicbot import StateMachine, state, timed_state

class ShooterControl(StateMachine):
shooter: Shooter
intake: Intake

def fire(self):
"This function is called from teleop or autonomous to cause the
shooter to fire"
self.engage()

@state(first=True)
def prepare_to_fire(self):
"First state -- waits until shooter is ready before going to the
next action in the sequence'
self.shooter.enable()

if self.shooter.is_ready():
self.next_state_now('firing")

@timed_state(duration=1, must_finish=True)
def firing(self):
"Fires the ball"
self.shooter.enable()
self.intake. feed_shooter()

There’s a few special things to point out here:

* There are two steps in this state machine: ‘prepare_to_fire’ and ‘firing’. The first step is ‘prepare_to_fire’, and it
only transitions into ‘firing’ if the shooter is ready.

* When you want the state machine to start executing, you call the ‘engage’ method. Of course, it’s nice to have a
semantically useful name, so we defined a function called ‘fire’ which just calls the ‘engage’ function for us.

» True to magicbot philosophy, the state machine will only execute if the ‘engage’ function is continuously called.
So if you call engage, then prepare_to_fire will execute. But if you neglect to call engage again, then no states
will execute.

Note: There is an exception to this rule! Once you start firing, if the intake stops then the ball will get stuck, so
we must continue even if engage doesn’t occur. To tell the state machine about this, we pass the must_£finish
argument to @timed_state which will continue executing the state machine step until the duration has expired.

Now obviously this is a very simple example, but you can extend the sequence of events that happens as much as
you want. It allows you to specify arbitrarily complex sets of steps to happen, and the resulting code is really easy to

54 Chapter 1. Projects

RobotPy Documentation, Release 2023

understand.

Using these components

Here’s one way that you might put them together in your robot.py file:

class MyRobot(magicbot.MagicRobot):

High level components go first
shooter_control: ShooterControl

Low level components come last
intake: Intake
shooter: Shooter

def teleopPeriodic(self):
if self.joystick.getTrigger():
self.shooter_control.fire()

API Reference

See also:

Magicbot API Reference

1.6 Hardware & Sensors

FIRST has put together a lot of great documentation that can tell you how to connect hardware devices and interact
with it from robot code.

* Hardware APIs

* Using CAN Devices

* WPILib Sensors

* Driver Station Inputs and Feedback

While their documentation code samples are in C++ and Java, it’s fairly straightforward to translate them to python —
RobotPy includes support for all components that are supported by WPILib’s Java implementation, and generally the
objects have the same name and method names.

If you have problems translating their code samples into Python, you can use our support resources to get help (see
Support).

1.6. Hardware & Sensors 55

https://robotpy.readthedocs.io/projects/utilities/en/stable/magicbot.html#magicbot-api
https://docs.wpilib.org/en/stable/docs/software/hardware-apis/index.html
https://docs.wpilib.org/en/stable/docs/software/can-devices/index.html
https://docs.wpilib.org/en/stable/docs/software/hardware-apis/sensors/index.html
https://docs.wpilib.org/en/stable/docs/software/driverstation/index.html

RobotPy Documentation, Release 2023

1.7 Camera & Vision

The RobotPy project provides robotpy-cscore, which are python bindings for cscore, a high performance camera access
and streaming library introduced by FIRST in 2017. It can be used to:

e Stream a USB/HTTP camera to SmartDashboard or the LabVIEW dashboard via HTTP

» Capture images from USB or HTTP camera, modify them using OpenCV/Numpy, and send them via HTTP to
SmartDashboard, the LabVIEW dashboard, or a web browser.

robotpy-cscore is intended to be usable on any platform supported by OpenCV and Numpy, and is a more flexible
and powerful alternative to solutions such as mjpg-streamer.

Note: cscore is potentially useful outside of the FIRST Robotics Competition, as it has very high performance and
ease of use compared to other solutions.

1.7.1 On the RoboRIO

Warning: Image processing is a CPU intensive task, and because of the Python Global Interpreter Lock (GIL) we
do NOT recommend using robotpy-cscore directly in your robot process. Don’t do it. Really.

Instead, we provide easy to use ways to launch your camera/image processing code from your Python robot code,
and it won’t break simulation either! See below for details.

For more information on the GIL and its effects, you may wish to read the following resources:
* Python Wiki: Global Interpreter Lock
* Efficiently Exploiting Multiple Cores with Python

Note: The following assumes you’re writing your robot code and your image processing code using RobotPy. However,
if you’re writing your Robot code using Java, we do have an example which would allow you to launch Python image
processing code from your Java Robot code. See this file for details.

Installation

robotpy-cscore can be easily installed with the RobotPy installer. See these instructions for details.

Automatic camera streaming

If you do not wish to modify or process the images from your camera, and only wish to stream a single camera via
HTTP to a dashboard, then you only need to add the following to your robotInit function:

wpilib.CameraServer.launch()

That’s it! You should be able to connect to the camera using SmartDashboard, the default LabVIEW Dashboard, or if
you point your browser at http://roborio-XXXX-frc.local:1181.

The quick vision example can be found in the RobotPy examples repository.

56 Chapter 1. Projects

https://github.com/robotpy/robotpy-cscore/
https://github.com/wpilibsuite/cscore
https://wiki.python.org/moin/GlobalInterpreterLock
http://python-notes.curiousefficiency.org/en/latest/python3/multicore_python.html
https://github.com/robotpy/robotpy-cscore/blob/main/examples/CameraServer.java
https://github.com/robotpy/examples/tree/main/cscore-quick-vision

RobotPy Documentation, Release 2023

Image processing

Because the GIL exists (see above), RobotPy’s WPILib implementation provides a way to run your image processing
code in a separate process. This introduces a number of rules that your image processing code must follow to efficiently
and safely run on the RoboRIO:

* Your image processing code must be in its own file
» Never import the cscore package from your robot code, it will just waste memory

* Never import the wpilib or hal packages from your image processing code

Warning: wpilib may not be imported from two programs on the RoboRIO. If this happens, the second
program will attempt to kill the first program.

vision file

The first step you need to do is create a file —let’s call it vision. py, and stick it in the same directory as your robot.py
file. You can also put it in a subdirectory underneath your robot code, and the robot deploy command will copy it to
the robot.

See also:

Custom Image processing

robot.py

Once you have written your cscore code, in the robotInit function in your robot. py file you need to add the following
line:

wpilib.CameraServer.launch('vision.py:main')

The parameter provided to launch is of the form FILENAME : FUNCTION. For example, if your code was located in the
camera subdirectory in a file called targeting.py, and your function was called run, then you would do:

wpilib.CameraServer.launch('camera/targeting.py:run')

Important notes

* Your image processing code will be launched via a stub that will setup logging and initialize NetworkTables to
talk to your robot code

* The child process will NOT be launched when running the robot code in simulation or unit testing mode

* If your image processing code contains a if __name__ == '__main__"': block, the code inside that block
will NOT be executed when the code is launched from robot.py

* The camera code will be killed when the robot.py program exits. If you wish to perform cleanup, you should
register an atexit handler.

The intermediate vision example can be found in the RobotPy examples repository.

1.7. Camera & Vision 57

https://github.com/robotpy/examples/tree/main/cscore-intermediate-vision

RobotPy Documentation, Release 2023

More information

* The WPILib documentation for cscore may be useful to explain concepts (though some details are different)

* CSCore Troubleshooting

1.7.2 Other platforms
robotpy-cscore is a great solution for running image processing on a coprocessor such as the Raspberry Pi or on

the Driver Station. However, we do not provide precompiled packages at this time and you will need to compile binary
packages for your platform.

Installation

See installing robotpy-cscore.

Automatic camera streaming

If you do not wish to modify or process the images from your camera, and only wish to stream a single camera via
HTTP to a dashboard, then you can use the cscore __main__ module to start a CameraServer automatically:

$ python3 -m cscore

That’s it! You can point your browser to that host at port 1181, and you should see the cscore default webpage.

Running a custom cscore program

See also:
Custom Image processing

The easiest way to launch a cscore program is via the cscore __main__ module helper. It will automatically con-
figure python logging for you, and also provides useful exception handling and NetworkTables configuration for you
automatically.

You can instruct the __main__ module to run your custom code via a command line parameter. The parameter is of the
form FILENAME : FUNCTION. For example, if your code was located in a file called targeting.py, and your function
was called run, then you would do:

$ python3 -m cscore targeting.py:run

Examples

See the intermediate_cameraserver.py example in the robotpy-cscore examples folder

58 Chapter 1. Projects

https://docs.wpilib.org/en/stable/docs/software/vision-processing/introduction/cameraserver-class.html
https://github.com/robotpy/robotpy-cscore/tree/main/examples

RobotPy Documentation, Release 2023

Launching your script at startup

TODO: Add section about launching your script at coprocessor startup

Viewing streams via the LabVIEW dashboard or Shuffleboard

The LabVIEW dashboard and Shuffleboard both retrieve information about the camera stream via NetworkTables. If
you use the cscore. CameraServer class to manage your streams (which you should!) it will automatically publish the
correct information to NetworkTables. In order for the dashboard program to receive the NetworkTables information,
you need to tell your cscore program to connect to a NetworkTables server (your robot), and the robot code must be
actually running.

If you’re using the cscore __main__ module to launch your code you can tell it configure NetworkTables to connect to
your robot. Use the --robot or --team options:

$ python3 -m cscore --team XXXX

Or if running custom code:

$ python3 -m cscore --team XXXX vision.py:run

If you’re writing your own custom code/launcher, at some point you should initialize NetworkTables and point it at
your robot:

import networktables
networktables.startClientTeam(1234)

More information

e The WPILib documentation for cscore may be useful to explain concepts (though some details are different)

* CSCore Troubleshooting

1.7.3 Custom Image processing

vision file

Warning: If you merely wish to display a single camera stream and do not want to process the images, do NOT
use this code. Instead, see one of the following sections about automatic streaming:

* RoboRIO automatic streaming

* non-RoboRIO automatic streaming

The first step you need to do is create a file — let’s call it vision.py. vision.py must contain some function to be
called, let’s call it main, and at the minimum it needs to do the following operations:

* Create a CameraServer instance
* Start capturing from USB
* Get a cvSink object that images can be retrieved from

* Loop and capture images

1.7. Camera & Vision 59

https://robotpy.readthedocs.io/projects/cscore/en/stable/cscore/CameraServer.html#cscore.CameraServer
https://docs.wpilib.org/en/stable/docs/software/vision-processing/introduction/cameraserver-class.html

RobotPy Documentation, Release 2023

Here’s a full example:

Import the camera server
from cscore import CameraServer

Import OpenCV and NumPy
import cv2
import numpy as np

def main(Q:
cs = CameraServer.getInstance()
cs.enableLogging)

Capture from the first USB Camera on the system
camera = cs.startAutomaticCapture()
camera.setResolution(320, 240)

Get a CvSink. This will capture images from the camera
cvSink = cs.getVideo()

(optional) Setup a CvSource. This will send images back to the Dashboard
outputStream = cs.putVideo("Name", 320, 240)

Allocating new images is very expensive, always try to preallocate
img = np.zeros(shape=(240, 320, 3), dtype=np.uint8)

while True:

Tell the CvSink to grab a frame from the camera and put it

in the source image. If there is an error notify the output.

time, img = cvSink.grabFrame(img)

if time == 0:
Send the output the error.
outputStream.notifyError(cvSink.getError());
skip the rest of the current iteration

continue
#
Insert your image processing logic here!
#

(optional) send some image back to the dashboard
outputStream.putFrame (img)

This code will work both on a RoboRIO and on other platforms. The exact mechanism to run it differs depending on
whether you’re on a RoboRIO or a coprocessor:

¢ RoboRIO
e Other

60 Chapter 1. Projects

RobotPy Documentation, Release 2023

Multiple Cameras

cscore easily supports multiple cameras! Here’s a really simple vision. py file that will get you started streaming two
cameras to the FRC Dashboard program:

from cscore import CameraServer

def main(Q:
cs = CameraServer.getInstance()
cs.enablelLogging ()

usbl = cs.startAutomaticCapture(dev=0)
usb2 = cs.startAutomaticCapture(dev=1)

cs.waitForever()

One thing to be careful of: if you get USB Bandwidth errors, then you probably need to do one of the following:
* Reduce framerate (FPS). The default is 30, but you can get by with 10 or even as low as 5 FPS.

* Lower image resolution: you’d be surprised how much you can do with a 160x120 image!

Sometimes the first and second camera swap!?

When using multiple USB cameras, Linux will sometimes order the cameras unpredictably — so camera 1 will become
camera 0. Sometimes.

The way to deal with this is to tell cscore to use a specific camera by its path on the file system. First, identify the
cameras dev paths by using SSH to access the robot and execute £find /dev/v41. You should see output similar to
this:

/dev/v4l

/dev/v4l/by-path
/dev/v4l/by-path/pci-0000:00:1a.0-us
/dev/v4l/by-path/pci-0000:00:1d.0-us
/dev/v4l/by-id

0:1.4:1.0-video-index0®
0:1.4:1.2-

b_
b- video-index0®

What you need to do is figure out what paths belong to which camera, and then when you start the camera server, pass
it a name and a path via:

usbl = cs.startAutomaticCapture(name="caml", path='/dev/v41l/by-id/some-path-here")
usb2 = cs.startAutomaticCapture(name="cam2", path='/dev/v4l/by-id/some-other-path-here")

Generally speaking, if your cameras have unique IDs associated with them (you can tell because the by-id path has a
random string of characters in it), then using by-id paths are the best, as they’ll always be the same regardness which
port the camera is plugged into.

However, if your camera does NOT have unique IDs associated with them, then you should use the by-path versions
instead. These device paths are unique to each USB port plugged in. They should be fairly deterministic, but sometimes
with USB hubs they have been known to change.

Note: The Microsoft Lifecam cameras commonly used in FRC don’t have unique IDs associated with them, so you’ll
want to use the by-path versions of the links if you are using two Lifecams.

1.7. Camera & Vision 61

RobotPy Documentation, Release 2023

More information

* The WPILib documentation for cscore may be useful to explain concepts (though some details are different)
* robotpy-cscore API documentation

* CSCore Troubleshooting

1.8 Troubleshooting

e Robot Code

Problem: I can’t run code on the robot!
— Problem: no module named ‘wpilib’

Problem: no module named . ..

Problem: pyfrc cannot connect to the robot, or appears to hang

Problem: I deploy successfully, but the driver station still shows ‘No Robot Code’

Problem: When I run deploy, it complains that the WPILib versions don’t match

Problem: My code segfaulted and there’s no Python stack trace!
* Common causes
* pyntcore

isConnected() returns False!

Ensure you're using the correct mode

Use static IPs when using NetworkTables

— Problem: I can’t determine if NetworkTables has connected
* cscore

— Problem: I can’t view my cscore stream via a dashboard

— Problem: My image processing code is running at 100% CPU usage

— Problem: It still doesn’t work!

1.8.1 Robot Code
Problem: | can’t run code on the robot!
There are lots of things that can go wrong here. It is very important to have the latest versions of the FIRST robot
software installed:
* Robot Image

¢ Driver Station + Tools

The FIRST WPILib documentation contains information on what the current versions are, and how to go about updating
the software.

You should also have the latest version of the RobotPy software packages:

62 Chapter 1. Projects

https://docs.wpilib.org/en/stable/docs/software/vision-processing/introduction/cameraserver-class.html
https://robotpy.readthedocs.io/projects/cscore/en/stable/api.html#cscore-api
https://docs.wpilib.org

RobotPy Documentation, Release 2023

Do you have the latest version of pyfrc?

Warning: Make sure that the version of WPILib on your computer matches the version installed on the robot!
You can check what version you have locally by running

Windows

py

-3 -m pip list

Linux/macOS

pip3 list

1.
2.
3.

Did you run the deploy command to put the code on the robot?
Make sure you have the latest version of pyfrc! Older versions won’t work.

Read any error messages that pyfrc might give you. They might be useful. :)

Problem: no module named ‘wpilib’

If you’re on your local computer, did you install robotpy via pip?

If you’re on the roboRIO, did you install RobotPy?

Problem: no module named ...

If you’re using a non-WPILib vendor library, it must be installed separately.

If you

robotpy-ctre install

robotpy-navx install
robotpy-photonvision install
robotpy-playingwithfusion install
robotpy-rev install

’re on your local computer, did you install robotpy via pip?

If you’re on the roboRIO, did you install RobotPy?

Problem: pyfrc cannot connect to the robot, or appears to hang

1.

Can you ping your robot from the machine that you’re deploying code from? If not, pyfrc isn’t going to be able
to connect to the robot either.

. Try to ssh into your robot, using PuTTY or the ssh command on Linux/macOS. The username to use is 1vuser,

and the password is an empty string. If this doesn’t work, pyfrc won’t be able to copy files to your robot

. If all of that works, it might just be that you typed the wrong hostname to connect to. There’s a file called

.deploy_cfg next to your robot.py that pyfrc created. Delete it, and try again.

1.8.

Troubleshooting 63

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

RobotPy Documentation, Release 2023

Problem: | deploy successfully, but the driver station still shows ‘No Robot Code’

1. Did you use the --nc option to the deploy command? Your code may have crashed, and the output should be
visible on netconsole.

2. If you can’t see any useful output there, then ssh into the robot and run ps -Af | grep python3. If nothing
shows up, it means your python code crashed and you’ll need to debug it. Try running it manually on the robot
using this command:

python3 /home/lvuser/py/robot.py run

Problem: When | run deploy, it complains that the WPILib versions don’t match

Not surprisingly, the error message is correct.

During deployment, pyfrc does a number of checks to ensure that your robot is setup properly for running python robot
code. One of these checks is testing the WPILib version number against the version installed on your computer (it’s
installed when you install pyfrc).

You should either:

¢ Upgrade the RobotPy installation on the robot to match the newer version on your computer. See the RobotPy
install guide for more info.

» Upgrade the robotpy installation on your computer to match the version on the robot. Just run:

Windows

py -3 -m pip install --upgrade robotpy

Linux/macOS

pip3 install --upgrade robotpy

If you really don’t want pyfrc to do the version check and need to deploy the code now, you can specify the
--no-version-check option. However, this isn’t recommended.

Problem: My code segfaulted and there’s no Python stack trace!

When you find something like this here’s what you can do:

First, figure out where the code is crashing. Traditional debugging techniques apply here, but a simple way is to just
delete and/or comment out things until it no longer fails. Then add the last thing back in and verify that the code still
crashes.

Advanced users can compile a custom version of the robotpy libraries with symbols and use gdb to get a full stack trace
(documentation TBD).

Once you’ve identified where it crashes, file a bug on github and we can help you out.

64 Chapter 1. Projects

RobotPy Documentation, Release 2023

Common causes

Python objects are reference counted, and sometimes when you pass one directly to a C++ function without retaining
a reference a crash can occur:

class Foo:
def do_something(self):
some_function(Thing())

In this example, Thing is immediately destroyed after some_function returns (because there are no references to it),
but some_function (or something else) tries to use the object after it is destroyed. This causes a segfault or memory
access exception of some kind.

These are considered bugs in RobotPy code and if you report an issue on github we can fix it. However, as a workaround
you can retain a reference to the thing that you created and that often resolves the issue:

class Foo:
def do_something(self):
self.thing = Thing()
some_function(self.thing)

1.8.2 pyntcore

isConnected() returns False!

Keep in mind that NetworkTables does not immediately connect, and it will connect/disconnect as devices come up
and down. For example, if your program initializes NetworkTables, sends a value, and exits — that almost certainly will
fail.

Ensure you’re using the correct mode

If you’re running NetworkTables as part of a RobotPy robot — relax, NetworkTables is setup as a server automatically
for you, just like in WPILib!

If you’re trying to connect to the robot from a coprocessor (such as a Raspberry Pi) or from the driver station, then
you will need to ensure that you initialize NetworkTables correctly. The following shows how to initialize pyntcore
correctly as a client.

import ntcore
inst = ntcore.NetworkTableInstance.getDefault()

start a NT4 client
inst.startClient4("example client")

connect to a roboRIO with team number TEAM
inst.setServerTeam(TEAM)

starting a DS client will try to get the roboRIO address from the DS application
inst.startDSClient()

connect to a specific host/port
inst.setServer("host", ntcore.NetworkTableInstance.kDefaultPort4)

1.8. Troubleshooting 65

RobotPy Documentation, Release 2023

Don’t know what the right hostname is? That’s what the next section is for...

Use static IPs when using NetworkTables

See also:

Using NetworkTables

Problem: | can’t determine if NetworkTables has connected

Make sure that you have enabled python logging (it’s not enabled by default):

To see messages from networktables, you must setup logging
import logging
logging.basicConfig(level=1ogging.DEBUG)

Once you’ve enabled logging, look for messages that look like this:

INFO:nt:CONNECTED 10.14.18.2 port 40162 (...)

If you see a message like this, it means that your client has connected to the robot successfully. If you don’t see it, that
means there’s still a problem. Much of the time this occurs when not using a static IP for your robot, and is fixed when
you start using a static IP for your robot.

1.8.3 cscore

Problem: | can’t view my cscore stream via a dashboard

First, make sure that your stream is actually working. Connect with a web browser to the host that the stream is running
on on the correct port (if you are using CameraServer, this will be output via a python logging message). The default
portis 1181.

The LabVIEW dashboard and Shuffleboard both receive information about connecting to the stream via NetworkTables.
This means that both your cscore code and the dashboard need to be connected to your robot, and your robot’s code
needs to be running. If you have python logging enabled, then your cscore code should output a message like this if
it’s connected to a robot:

INFO:nt:CONNECTED 10.14.18.2 port 40162 (...)

If it’s connected to NetworkTables, then you can use something like the TableViewer to view the contents of Network-
Tables and see if the correct URL is being published. Look under the ‘CameraPublisher’ key.

Problem: My image processing code is running at 100% CPU usage

You should only encounter this if running your own image processing code. If you’re just streaming a camera, this
should never happen and is a bug. When doing image processing, there’s a few ways you can use too much CPU,
particularly if you do it on a RoboRIO. Here are some thoughts:

 Resizing images is really expensive, don’t do that. Instead, set the resolution of your camera via the API provided
by cscore

¢ Preallocate your image buffers. Most OpenCV functions will optionally take a final argument called ‘dst’ that
it will write the result of the image processing operation to. If you don’t provide a ‘dst’ argument, then it will
allocate a new image buffer each time. Because image buffers can be really large, this adds up quickly.

66 Chapter 1. Projects

RobotPy Documentation, Release 2023

* Try a really small resolution like 160x120. Most image processing tasks for FRC are still perfectly doable at
small resolutions.

* If your framerate is over 10fps, consider bringing it down and see if that helps.
Problem: It still doesn’t work!

Please file a bug on github or use one of our support channels.

1.9 Support

The RobotPy project was started in 2010, and since then the community surrounding RobotPy has continued to grow!
If you have questions about how to do something with RobotPy, you can ask questions in the following locations:

* RobotPy mailing list
¢ ChiefDelphi Python Forums

Warning: When posting on ChiefDelphi, post on the Python forum, not the main programming forum, otherwise
your support request may get lost in the noise!

We have found that most problems users have are actually questions generic to WPILib-based languages like C++/Java,
so searching around the ChiefDelphi forums could be useful if you don’t have a python-specific question.

During the FRC build season, you can probably expect answers to your questions within a day or two if you send
messages to the mailing list. As community members are also members of FRC teams, you can expect that the closer
we get to the end of the build season, the harder it will be for community members to respond to your questions!

1.9.1 Reporting Bugs

If you run into a problem with RobotPy that you think is a bug, or perhaps there is something wrong with the documen-
tation or just too difficult to do, please feel free to file bug reports on the github issue tracker. Someone should respond
within a day or two, especially during the FIRST build season.

1.9.2 Contributing new fixes or features
RobotPy is intended to be a project that all members of the FIRST community can quickly and easily contribute to. If
you find a bug, or have an idea that you think others can use:

1. Fork the appropriate git repository to your github account

2. Create your feature branch (git checkout -b my-new-feature)

3. Commit your changes (git commit -am ‘Add some feature’)

4. Push to the branch (git push -u origin my-new-feature)

5. Create new Pull Request on github

Github has a lot of documentation about forking repositories and pull requests, so be sure to check out those resources.

1.9. Support 67

https://github.com/robotpy/robotpy-cscore/issues
https://groups.google.com/forum/#!forum/robotpy
https://www.chiefdelphi.com/c/technical/python/77
https://github.com/robotpy/robotpy-wpilib/issues
https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/using-pull-requests

RobotPy Documentation, Release 2023

1.9.3 RobotPy Chat

During the FRC Build Season, some RobotPy developers may be able to be reached on the RobotPy Gitter Channel.

Note: the channel is not very active, but if you stick around for a day or two someone will probably answer your
question — think in terms of email response time

The channel tends to be most active between 11pm and 1am EST.

1.10 FAQ

Here you can find answers to some of the most frequently asked questions about RobotPy.

1.10.1 Should our team use RobotPy?

What we often recommend teams to do is to take their existing code for their existing robot, and translate it to RobotPy
and try it out first in the robot simulator, followed by the real robot. This will give you a good taste for what developing
code for RobotPy will be like.

Related questions for those curious about RobotPy:
e Is RobotPy competition-legal?
e Is RobotPy stable?
* Is RobotPy fast?

1.10.2 Installing and Running RobotPy

How do I install RobotPy?

See our getting started guide.

What version of Python do RobotPy projects use?

When running RobotPy on a FIRST Robot, our libraries/interpreters use Python 3. This means you should reference
the Python 3.x documentation instead of the Python 2.x documentation.

* RobotPy WPILib on the roboRIO uses the latest version of Python 3 at kickoff. In 2023, this was Python 3.11.
When using pyfrc or similar projects, you should use a Python 3.7 or newer interpreter (the latest is recom-
mended).

¢ RobotPy 2014.x is based on Python 3.2.5.

pynetworktables is compatible with Python 3.5 or newer, since 2019. Releases prior to 2019 are also compatible with
Python 2.7.

68 Chapter 1. Projects

https://gitter.im/robotpy/robotpy-wpilib
https://docs.python.org/3/
https://github.com/robotpy/pynetworktables

RobotPy Documentation, Release 2023

What happens when my code crashes?

An exception will be printed out to the console, and the Driver Station log may receive a message as well. It is highly
recommended that you enable NetConsole for your robot, so you can see these messages.

Is WPILib available?

Of course! Just import wpilib. Class and function names are identical to the Java version. Check out the Python
WPILib API Reference for more details.

As of 2020, the API mostly matches the C++ version of WPILib, except that protected functions are prefixed with an
underscore (but are availble to all Python code).

From 2015-2019, almost all classes and functions from the Java WPILib are available in RobotPy’s WPILib imple-
mentation.

Prior to 2015, the API matched the C++ version of WPILib.

Is Command-based programming available?

Of course! Check out the commands2 package. There is also some python-specific documentation available.

Is there an easy way to test my code outside of the robot?

Glad you asked! Our pyfrc project has a built in lightweight robot simulator you can use to run your code, and also has
builtin support for unit testing with py.test.

1.10.3 Competition

Is RobotPy competition-legal?

Python is not an official FRC language yet, but we are working with the WPILib team to make it official in 2024. See
https://wpilib.org/blog/bringing-python-to-frc for the announcement.

As RobotPy was not written by anyone involved with the GDC, we can’t provide a guaranteed answer (particularly not
for future years). However, we see no reason that RobotPy would not be legal: to the cRIO/RoboRIO, it looks just like
any other C++ WPILib-using program that reads text files. RobotPy itself should be considered COTS software as it
is freely available to all teams. Teams have been using RobotPy since 2010 without any problems from FIRST, and we
expect that to continue.

Caveat emptor: while RobotPy is almost certainly legal to use, your team should carefully consider the risk of using
such a large piece of unofficial software; unless RobotPy is used by many teams, if you run into trouble at a competition,
there may not be anyone else there to help! However, we’ve found that most problems teams run into are problems with
WPILIb itself, and not RobotPy.

Also, be sure to keep in mind the fact that Python is a dynamic language and is NOT compiled. This means that typos
can easily go undetected until your robot runs that particular line of code, resulting in an exception and 5 second restart.
Make sure to test your code thoroughly (see our unit testing documentation).

1.10. FAQ 69

https://robotpy.readthedocs.io/projects/wpilib/en/stable/api.html#wpilib-api
https://robotpy.readthedocs.io/projects/wpilib/en/stable/api.html#wpilib-api
https://robotpy.readthedocs.io/projects/commands-v2/en/stable/commands2.html#module-commands2
http://pytest.org
https://wpilib.org/blog/bringing-python-to-frc

RobotPy Documentation, Release 2023

Is RobotPy stable?

Yes! While Python is not an officially supported language, teams have been using RobotPy since 2010, and the main-
tainer of RobotPy is a member of the WPILib team. Much of the time when bugs are found, they are found in the
underlying WPILib, instead of RobotPy itself.

One caveat to this is that because RobotPy doesn’t have a beta period like WPILib does, bugs tend to be found during
the first half of competition season. However, by the time build season ends, RobotPy is just as stable as any of the
officially suported languages.

How often does RobotPy get updated?
RobotPy is a community project, and updates are made whenever community members contribute changes and the
developers decide to push a new release.

Historically, RobotPy tends to have frequent releases at the beginning of build season, with less frequent releases as
build season goes on. We try hard to avoid WPILib releases after build season ends, unless critical bugs are found.

1.10.4 Performance

Is RobotPy fast?

It’s fast enough.

We’ve not yet benchmarked it, but it’s almost certainly just as fast as Java for typical WPILib-using robot code. RobotPy
uses the native C++ WPILIib, and thus the only interpreted portions are your specific robot actions. If you have partic-
ularly performance sensitive code, you can write it in C++ and use pybind11 wrappers to interface to it from Python.

1.10.5 RobotPy Development

Who created RobotPy?

RobotPy was created by Peter Johnson, programming mentor for FRC Team 294, Beach Cities Robotics. He was
inspired by the Lua port for the cRIO created by Ross Light, FRC Team 973. Peter is a member of the FIRST WPILib
team, and also created the ntcore and cscore libraries.

The current RobotPy maintainer is Dustin Spicuzza, also a member of the FIRST WPILib team.
Current RobotPy developers include:

* Dustin Spicuzza (@virtuald)

* David Vo (@auscompgeek)

* Vasista Vovveti (@TheTripleV)

70 Chapter 1. Projects

http://www.bcrobotics.org/
http://redmine.zombiezen.com/projects/greyhoundlua/
https://github.com/wpilibsuite/ntcore/
https://github.com/wpilibsuite/cscore/
http://github.com/virtuald
https://github.com/virtuald
https://github.com/auscompgeek
https://github.com/TheTripleV

RobotPy Documentation, Release 2023

1.10.6 How can | help?
RobotPy is an open project that all members of the FIRST community can easily and quickly contribute to. If you find
a bug, or have an idea that you think others can use:

* Test and report any issues you find.

* Port and test a useful library.

* Write a Python module and share it with others (and contribute it to the robotpy-wpilib-utilities package!)

1.11 Developer Documentation

These pages contain information about various internal details of RobotPy which are useful for advanced users and
those interested in developing RobotPy itself. We will endeavor to keep these pages up to date. :)

1.11.1 Design

Adding options to robot.py
When wpilib.run() is called, that function determines available commands that can be run, and parses command
line arguments to pass to the commands. Examples of commands include:

* Running the robot code

* Running the robot code, connected to a simulator

* Running unit tests on the robot code

* And lots more!

python setuptools has a feature that allows you to extend the commands available to robot.py without needing to modify
WPILIib’s code. To add your own command, do the following:

* Define a setuptools entrypoint in your package’s setup.py (see below)
* The entrypoint name is the command to add
¢ The entrypoint must point at an object that has the following properties:
— Must have a docstring (shown when --help is given)
— Constructor must take a single argument (it is an argparse parser which options can be added to)

— Must have a ‘run’ function which takes two arguments: options, and robot_class. It must also take
arbitrary keyword arguments via the **kwargs mechanism. If it receives arguments that it does not
recognize, the entry point must ignore any such options.

If your command’s run function is called, it is your command’s responsibility to execute the robot code (if that is
desired). This sample command demonstrates how to do this:

class SampleCommand:
"Help text shown to user"

def __init__(self, parser):
pass

def run(self, options, robot_class, **static_options):

(continues on next page)

1.11. Developer Documentation 71

https://github.com/robotpy/robotpy-wpilib-utilities
https://robotpy.readthedocs.io/projects/wpilib/en/stable/wpilib/functions.html#wpilib.run

RobotPy Documentation, Release 2023

(continued from previous page)

runs the robot code main loop
robot_class.main(robot_class)

To register your command as a robotpy extension, you must add the following to your setup.py setup() invocation:

from setuptools import setup
setup(
entry_points={'robotpy': ['name_of_command = package.module:CommandClassName']},

)

1.11.2 Developer Installation

TODO

1.11.3 Deploy process details

When the code is uploaded to the robot, the following steps occur:
» SSH/sftp operations are performed as the 1vuser user (this is REALLY important, don’t use the admin user!)
* pyfrc does some checks to make sure the environment is setup properly
* The directory containing robot. py is recursively copied to the the directory /home/lvuser/py
¢ The files robotCommand and robotDebugCommand are created

e /usr/local/frc/bin/frcKillRobot.sh -t -ris called, which causes any existing robot code to be killed,
and the new code is launched

If you wish for the code to be started up when the roboRIO boots up, you need to make sure that “Disable RT Startup
App” is not checked in the roboRIO’s web configuration.

These steps are compatible with what C++/Java does when deployed by GradleRIO, so you should be able to seamlessly
switch between python and other FRC languages!

Deploy Artifacts

During the deploy process, robotpy will generate a deploy. json that can provide your robot with extra information
regarding how code was deployed. It contains information that could be used for example, to alert you if your hash
contains the git -dirty flag, or assist in debugging an issue by exploring who, when and with what code was deployed
with.

The deploy. json is not present on the dev filesystem and is copied over via sftp at deploy time. It contains the
following keys:

{
"git-desc": "2022.1-8-gb4fc2aca-dirty",
"git-hash": "b4fc2aca399810f1fe28faf23314cd422a6db920",
"git-branch": "feat/working_code",
"deploy-host": "MyLaptop",

(continues on next page)

72 Chapter 1. Projects

RobotPy Documentation, Release 2023

(continued from previous page)

"deploy-user": "me",

"deploy-date": "2018-6-10T02:40:55",

"code-path": "/home/me/robots/MyRobotCode"
}

If you do not manage your code with git, use another VCS, or do not have git installed locally and on your path in the
usual location, the git tag will not be present.

You can use . /robotpy.py deploy-info to connect to the robot and fetch the deploy.json.

Example code:

#!/usr/bin/env python3

import os
import json
import wpilib.deployinfo

class MyRobot(wpilib.TimedRobot):
def robotInit(self):
data = wpilib.deployinfo.getDeployData()

print(data)

if __name__ == "__main__":

wpilib.run(MyRobot)

How to manually run code

Note: Generally, you shouldn’t need to use this process.

If you don’t have (or don’t want) to install pyfrc, running code manually is pretty simple too.
1. Make sure you have RobotPy installed on the robot
2. Use scp or sftp (Filezilla is a great GUI product to use for this) to copy your robot code to the roboRIO

3. ssh into the roboRIO, and run your robot code manually

python3 robot.py run

Your driver station should be able to connect to your code, and it will be able to operate your robot!

Note: This is good for running experimental code, but it won’t start the code when the robot starts up. Use pyfrc to
do that.

1.11. Developer Documentation 73

RobotPy Documentation, Release 2023

74

Chapter 1. Projects

CHAPTER
TWO

INDICES AND TABLES

* genindex
* modindex

¢ search

75

RobotPy Documentation, Release 2023

76

Chapter 2. Indices and tables

INDEX

C

CC 8,9
XX, 8,9

E

environment variable
CGC 8,9
CXX, 8,9

F)

Python Enhancement Proposals
PEP 600, 7

77

	Projects
	Getting Started
	Upgrade Notes
	NetworkTables 4 (NT4)
	Linux specific notes

	Installation
	RobotPy Components
	Optional/Vendor Components
	Using components
	RoboRIO vs Computer

	Computer Installation
	Robot Installation
	Install requirements
	Install process
	Install Python on a roboRIO
	Installing RobotPy on a roboRIO

	robotpy-cscore install
	RoboRIO installation
	Non-roboRIO installation
	Next steps

	Package notes
	pyfrc install
	code coverage support

	pyntcore install
	RoboRIO installation
	Non-roboRIO installation
	Getting Started

	Commands install
	Setup (tests/simulator)
	Setup (RoboRIO)

	robotpy-ctre install
	Setup (tests/simulator)
	Setup (RoboRIO)
	Python package
	NI Web Dashboard (optional)

	robotpy-navx install
	Setup (tests/simulator)
	Setup (RoboRIO)

	robotpy-pathplannerlib install
	Setup (tests/simulator)
	Setup (RoboRIO)
	Python package

	robotpy-photonvision install
	Setup (tests/simulator)
	Setup (RoboRIO)
	Python package

	robotpy-playingwithfusion install
	Setup (tests/simulator)
	Setup (RoboRIO)
	Python package

	robotpy-rev install
	Setup (tests/simulator)
	Setup (RoboRIO)
	Python package
	REV Firmware and Diagnostics

	RoboRIO Package Installer
	Installing/Executing the installer
	Executing the installer

	Python
	download-python
	install-python

	Python Packages
	download
	install

	Programmer’s Guide
	Introduction to Python
	Language elements
	Comments
	Indentation
	Pass
	Numbers
	Strings
	Booleans

	Variables
	Control Flow
	If

	Operations
	Functions
	Defintion
	Calling a function

	Classes
	Definition
	Creating an instance
	Accessing variables stored in a class instance
	Calling functions (methods) on a class instance

	Loops
	for
	while

	Exceptions
	Future topics
	Next Steps

	Anatomy of a robot
	Create your Robot code
	Importing necessary modules
	Robot object
	Adding motors and sensors
	Creating individual devices
	Robot drivetrain control

	Robot Operating Modes (TimedRobot)
	Main block
	Putting it all together
	Next Steps

	Running robot code
	How to execute the script
	Commands
	Next steps

	Deploying to the robot
	Immediate feedback via Netconsole
	Skipping Tests
	Starting deployed code at boot
	Manually deploying code
	Next Steps

	Robot Simulator
	Running the simulator
	User interface
	2D Field Widget and Physics
	Communicating via NetworkTables
	pynetworktables2js
	OutlineViewer
	Shuffleboard
	SmartDashboard

	Next Steps

	Unit testing robot code
	Builtin unit tests
	Writing your own test functions
	Code coverage for tests
	Next Steps

	Best Practices
	Make sure you’re running the latest version of RobotPy!
	Don’t use the print statement/logger excessively
	Don’t die during the competition!
	Consider using a robot framework

	Using NetworkTables
	Robot Configuration
	Resources

	Example Code

	Robot Code Frameworks
	Command Framework
	MagicBot Framework
	Philosophy
	Components
	Component creation
	Variable injection
	Operator Control code

	Autonomous mode
	Dashboard & coprocessor communications
	Example Components
	Low level components
	High level components
	Using these components

	API Reference

	Hardware & Sensors
	Camera & Vision
	On the RoboRIO
	Installation
	Automatic camera streaming
	Image processing
	vision file
	robot.py
	Important notes

	More information

	Other platforms
	Installation
	Automatic camera streaming
	Running a custom cscore program
	Examples

	Launching your script at startup
	Viewing streams via the LabVIEW dashboard or Shuffleboard
	More information

	Custom Image processing
	vision file
	Multiple Cameras
	Sometimes the first and second camera swap!?

	More information

	Troubleshooting
	Robot Code
	Problem: I can’t run code on the robot!
	Problem: no module named ‘wpilib’
	Problem: no module named …
	Problem: pyfrc cannot connect to the robot, or appears to hang
	Problem: I deploy successfully, but the driver station still shows ‘No Robot Code’
	Problem: When I run deploy, it complains that the WPILib versions don’t match
	Problem: My code segfaulted and there’s no Python stack trace!
	Common causes

	pyntcore
	isConnected() returns False!
	Ensure you’re using the correct mode
	Use static IPs when using NetworkTables
	Problem: I can’t determine if NetworkTables has connected

	cscore
	Problem: I can’t view my cscore stream via a dashboard
	Problem: My image processing code is running at 100% CPU usage
	Problem: It still doesn’t work!

	Support
	Reporting Bugs
	Contributing new fixes or features
	RobotPy Chat

	FAQ
	Should our team use RobotPy?
	Installing and Running RobotPy
	How do I install RobotPy?
	What version of Python do RobotPy projects use?
	What happens when my code crashes?
	Is WPILib available?
	Is Command-based programming available?
	Is there an easy way to test my code outside of the robot?

	Competition
	Is RobotPy competition-legal?
	Is RobotPy stable?
	How often does RobotPy get updated?

	Performance
	Is RobotPy fast?

	RobotPy Development
	Who created RobotPy?

	How can I help?

	Developer Documentation
	Design
	Adding options to robot.py

	Developer Installation
	Deploy process details
	Deploy Artifacts
	How to manually run code

	Indices and tables
	Index

